APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Cluster No.10 for PG Programs

(Engineering Colleges in Kannur, Wayanad & Kasaragod Districts)

Curriculum, Scheme of Examinations and Syllabi for M. Tech. Degree Program with effect from Academic Year 2015 - 2016

Mechanical Engineering

M. Tech.

in

Advanced Manufacturing and Mechanical Systems Design

(No. of Credits : 66)

CONTENTS

Slot	Course Code	Course Name	Semester	Page
А	10ME6101	Computational Methods	Ι	1
В	10ME6103	Principles of Machining and Manufacturing Systems	Ι	3
С	10ME6105	Discrete Event System Simulation	Ι	4
D	10ME6107	Production Automation and Trends in Manufacturing	Ι	5
Ē	10ME6113	Theory of Vibration	Ι	6
Ē	10ME6115	Fracture Mechanics and Fatigue	I	8
Ē	10ME6117	Mechanics of Composites	Ī	9
Ē	10ME6119	Advanced Mechanics of Solids	Ι	10
S	10GN6001	Research Methodology	Ι	11
Т	10ME6109	Seminar I	Ι	13
U	10ME6111	Engineering Software Lab	Ι	14
А	10ME6202	Modeling and Analysis of Manufacturing Systems	II	16
В	10ME6104	Intelligent Manufacturing	II	17
С	10ME6106	Micro and Nano Machining	II	19
D	10ME6114	Soft Computing Techniques	II	20
D	10ME6116	Design of Experiments	II	21
D	10ME6118	Management Information System	II	23
D	10ME6122	Quality and Reliability Engineering	II	24
D	10ME6124	Project Engineering and Management	II	26
E	10ME6126	Industrial Automation and Robotics	II	27
E	10ME6128	Mechatronics	II	28
E	10ME6132	Finite Element Methods and Applications	II	30
E	10ME6134	Metrology and Computer Aided Inspection	II	31
V	10ME6108	Mini Project	II	32
U	10ME6112	Advanced Manufacturing Lab	II	34
А	10ME7105	Industrial Tribology	III	35
А	10ME7107	Concurrent Engineering and Product Life Cycle Management	III	36
А	10ME7209	Sensors and Controls in Manufacturing	III	37
А	10ME7211	Process Planning and Cost Estimation	III	40
В	10ME7113	Energy Management	III	41
В	10ME7215	Expert System and Artificial Intelligence in Manufacturing	III	42
В	10ME7117	Machine Tool Design	III	43
В	10ME7119	Material Selection in Mechanical Design	III	45
Т	10ME7101	Seminar II	III	46
V	10ME7103	Project (Phase I)	III	47
V	10ME7104	Project (Phase II)	IV	49

t	umber			Marks	En Seme Examir	ster	larks	its
Slot	Course Number	Name	L-T-P	Internal	Marks	Duration (hours)	Total Marks	Credits
Α	10ME6101	Computational Methods	3-1-0	40	60	3	100	4
В	10ME6103	Principles of Machining and Manufacturing Systems	3-0-0	40	60	3	100	3
С	10ME6105	Discrete Event System Simulation	3-0-0	40	60	3	100	3
D	10ME6107	Production Automation and Trends in Manufacturing	3-0-0	40	60	3	100	3
E	10ME6xxx	Elective I	3-0-0	40	60	3	100	3
S	10GN6001	Research Methodology	0-2-0	100			100	2
Т	10ME6109	Seminar I	0-0-2	100			100	2
U	10ME6111	Engineering Software Lab	0-0-2	100			100	1
		TOTAL	15-3-4	500	300	-	800	21

SEMESTER I

Elective I

- 10ME6113 Theory of Vibration
- 10ME6115 Fracture Mechanics and Fatigue
- 10ME6117 Mechanics of Composites
- 10ME6119 Advanced Mechanics of Solids

SEMESTER 2

Examination Slot	Course Number	Name	L-T-P	Internal Marks	En Seme Examir Warks W	ster	Total Marks	Credits
А	10ME6202	Modeling and Analysis of Manufacturing Systems	3-1-0	40	60	3	100	4
В	10ME6104	Intelligent Manufacturing	3-0-0	40	60	3	100	3
С	10ME6106	Micro and Nano Machining	3-0-0	40	60	3	100	3
D	10ME6xxx	Elective II	3-0-0	40	60	3	100	3
Е	10ME6xxx	Elective III	3-0-0	40	60	3	100	3
V	10ME6108	Mini Project	0-0-4	100			100	2
U	10ME6112	Advanced Manufacturing Lab	0-0-2	100			100	1
		TOTAL	15-1-6	400	300	-	700	19

Elective II

- 10ME6114 Soft Computing Techniques
- 10ME6116 Design of Experiments
- 10ME6118 Management Information System
- 10ME6122 Quality and Reliability Engineering
- 10ME6124 Project Engineering and Management

<u>Elective III</u>

10ME6126	Industrial Automation and Robotics
10ME6128	Mechatronics
10ME6132	Finite Element Methods and Applications
10ME6134	Metrology and Computer Aided Inspection

Examination Slot	Course Number	Name	L-T-P	Internal Marks	En Seme Examir W	ster	Total Marks	Credits
Α	10ME7xxx	Elective IV	3-0-0	40	60	3	100	3
В	10ME7xxx	Elective V	3-0-0	40	60	3	100	3
Т	10ME7101	Seminar II	0-0-2	100			100	2
V	10ME7103	Project (Phase I)	0-0-12	50			50	6
		TOTAL	6-0-14	230	120	-	350	14

SEMESTER 3

Elective IV

Elective V

10ME7105	Industrial Tribology	10ME7113	Energy Management
10ME7107	Concurrent Engineering and Product	10ME7215	Expert System and Artificial
	Life Cycle Management		Intelligence in Manufacturing
10ME7209	Sensors and Controls in Manufacturing	10ME7117	Machine Tool Design
10ME7211	Process Planning and Cost Estimation	10ME7119	Material Selection in Mechanical
			Design

SEMESTER 4	

Examination Slot	Course Number	Name	L-T-P	Internal Marks	En Seme <u>Examin</u> syue W	ster	Total Marks	Credits
V	10ME7104	Project (Phase II)	0-0-23	70	30		100	12
		TOTAL	0-0-23	70	30	-	100	12

TOTAL NUMBER OF CREDITS: 66

SEMESTER 1

Course No.	Course Name	L-T- Cred		Year of Introduction			
10ME6101	COMPUTATIONAL METHODS	3-1-0	:4	2015			
Course Prerequi	isites in mathematical methods at UG level						
Course Objectiv							
0	of developing a thorough knowledge in computation	nal tech	nniques	to aid in the			
-	lysis of manufacturing processes and systems.						
-	nd computational foundation for further independent	t researc	ch in r	nanufacturing			
engineering							
Syllabus	ential equations, Second order differential equations, N	Ion hom	ogenoi	us differential			
	e transforms, Systems of differential equations, Series		0				
1 / 1	ions, Boundary value problems and fourier series, Part						
	butions, Moments, Estimation Theory, Correlation, Re						
	timization Nonlinear programming.						
Expected Outco							
	mpletion of the course, the students will	1 1	1	6			
	rong foundation in modeling with differential equation			ransforms			
	solve problems involving probability and probability model engineering problems as linear programming p			olve them			
	l understanding on the formulations and solutions of n						
problems		omnou	P1081				
References							
	reyzig Advanced Engineering Mathematics, John Wil	-					
	Ross,Differential Equations, JohnWiley&Sons, Third						
- ·	C. and Kapoor, V.K., Fundamentals of Mathematical v Delhi 2001	Statistic	es, Sult	an Chand and			
,	by Deb, Optimisation for Engineering Design-Algorith	ims and	Examn	les Prentice			
Hall India			Enump				
	Engineering Optimization., 3rd Ed., New Age Intern	national	(P) Lt	d,New Delhi,			
2007	2007						
Course Plan							
M			CT.	Semester			
Module	Contents		Hours	Exam Morks (%)			
First o	order differential equations, modeling with first of	order		Marks (%)			
	ons, equilibrium solutions, euler's method, Second o						
-	ntial equations, fundamental sets of solutions, wrons		8	15			
	l, Non homogenous differential equations, mechan						
vibrati	ons, Laplace transforms, inverse laplace transforms,	step					

function, solving IVP's with laplace transforms, dirac delta function, convolution integral.Image: Convolution integral.IISystems of differential equations, solutions to systems, phase plane, solution involving real, complex, repeated eigen values and laplace transforms, solving non homogenous differential equations, Modeling using systems of differential equations, Series solution about an ordinary point, solutions to culer differential equations.1015If st Internal ExaminationIf set internal ExaminationIIIHigher order differential equations, linear homogenous differential equations, solution using undetermined coefficients, variation of parameters and laplace transforms, systems of differential equations, solution, Boundary value problems and full series, convergence of fourier series, eigen values and eigen functions in BVP, periodic functions and orthogonal functions, fourier sine, cosine and full series, convergence of fourier series, laplace equation, vibrating string.1215It with the probability, Random variables, Binomial, Poisson, Geometric, Uniform, Normal, Exponential distributions, Moments, Moments generating functions and their propeties, Functions of Partial and Multiple correlations, Partial and Multiple regression, Estimation of parameters using maximum likelihood estimator and method moments.1015V Second Internal ExaminationV Problems-Theorem of LP-Relation to convexity - formulation of problems - simplex method and algorithm -Matrix form-two phase method. Duality- dual simplex method- LU1220	II fu Sy pl ar ec So sc	unction, convolution integral. Systems of differential equations, solutions to systems, phase blane, solution involving real, complex, repeated eigen values nd laplace transforms, solving non homogenous differential quations, Modeling using systems of differential equations, beries solutions, series solution about an ordinary point, olutions to euler differential equations. First Internal Examination	10	15
IISystems of differential equations, solutions to systems, phase plane, solution involving real, complex, repeated eigen values and laplace transforms, solving non homogenous differential equations, Modeling using systems of differential equations, series solution about an ordinary point, solutions to euler differential equations.1015Iter Internal ExaminationIter Internal Examinat	II So So So	Systems of differential equations, solutions to systems, phase blane, solution involving real, complex, repeated eigen values nd laplace transforms, solving non homogenous differential quations, Modeling using systems of differential equations, beries solutions, series solution about an ordinary point, olutions to euler differential equations. First Internal Examination	10	15
First Internal ExaminationHigher order differential equations, linear homogenous differential equations, solution using undetermined coefficients, variation of parameters and laplace transforms, systems of differential equations, series solution, Boundary value problems and fourier series, eigen values and eigen functions in BVP, periodic functions and orthogonal functions, fourier sine, cosine and full series, convergence of fourier series, Partial differential equation, with non zero temperature boundaries, laplace equation, vibrating string.1215IVProbability, Random variables, Binomial, Poisson, Geometric, Uniform, Normal, Exponential distributions, Moments, Moments generating functions and their properties, Functions of Random variables. Estimation Theory, Correlation, Regression, Estimation of parameters using maximum likelihood estimator and method of moments.1015Second Internal ExaminationVConcepts of optimization: Engineering applications-Statement of optimization problem-Classification - type and size of the problem. Linear programming: Standard form-Geometry of LP problems-Theorem of LP-Relation to convexity - formulation of LP problems - simplex method and algorithm -Matrix form- two phase method. Duality- dual simplex method- LU20		First Internal Examination		
 III differential equations, solution using undetermined coefficients, variation of parameters and laplace transforms, systems of differential equations, series solution, Boundary value problems and fourier series, eigen values and eigen functions in BVP, periodic functions and orthogonal functions, fourier sine, cosine and full series, convergence of fourier series, Partial differential equations, heat equation, wave equation, solution of heat equation with non zero temperature boundaries, laplace equation, vibrating string. IV Probability, Random variables, Binomial, Poisson, Geometric, Uniform, Normal, Exponential distributions, Moments, Moments generating functions and their properties, Functions of Random variables. Estimation Theory, Correlation, Regression, Estimation of parameters using maximum likelihood estimator and method of moments. IV Second Internal Examination V problems of optimization: Engineering applications-Statement of optimization problem-Classification - type and size of the problem. Linear programming: Standard form-Geometry of LP problems - simplex method and algorithm -Matrix form- two phase method. Duality- dual simplex method- LU 				
IVUniform, Normal, Exponential distributions, Moments, Moments generating functions and their properties, Functions of Random variables. Estimation Theory, Correlation, Regression, Partial and Multiple correlations, Partial and Multiple regression, Estimation of parameters using maximum likelihood estimator and method of moments.1015Second Internal ExaminationVConcepts of optimization: Engineering applications-Statement of optimization problem-Classification - type and size of the problem. Linear programming: Standard form-Geometry of LP problems-Theorem of LP-Relation to convexity - formulation of LP problems - simplex method and algorithm -Matrix form- two phase method. Duality- dual simplex method- LU1220	III di va di ar pe ar ec ec ec	lifferential equations, solution using undetermined coefficients, pariation of parameters and laplace transforms, systems of differential equations, series solution, Boundary value problems and fourier series, eigen values and eigen functions in BVP, periodic functions and orthogonal functions, fourier sine, cosine and full series, convergence of fourier series, Partial differential quations, heat equation, wave equation, solution of heat quation with non zero temperature boundaries, laplace quation, vibrating string.	12	15
Second Internal ExaminationConcepts of optimization: Engineering applications-Statement of optimization problem-Classification - type and size of the problem. Linear programming: Standard form-Geometry of LPVproblems-Theorem of LP-Relation to convexity - formulation of LP problems - simplex method and algorithm -Matrix form- two phase method. Duality- dual simplex method- LU	IV R E	Uniform, Normal, Exponential distributions, Moments, Moments generating functions and their properties, Functions of Random variables. Estimation Theory, Correlation, Regression, Partial and Multiple correlations, Partial and Multiple regression, Estimation of parameters using maximum likelihood estimator	10	15
optimization problem-Classification - type and size of the problem. Linear programming: Standard form-Geometry of LP1220Vproblems-Theorem of LP-Relation to convexity - formulation of LP problems - simplex method and algorithm -Matrix form- two phase method. Duality- dual simplex method- LU1220		Second Internal Examination		
Decomposition. Sensitivity analysis .Artificial variables	V pr L1 pl	ptimization problem-Classification - type and size of the problem. Linear programming: Standard form-Geometry of LP problems-Theorem of LP-Relation to convexity - formulation of LP problems - simplex method and algorithm -Matrix form- two	12	20
Nonlinear programming: Non linearity concepts-convex and concave functions- non-linear programming - gradient and Hessian. Unconstrained optimization: First & Second order necessary conditions-Minimisation & Maximisation Local &VIGlobal convergence-Speed of convergence. Basic decent methods: Fibonacci & Golden section search - Gradient methods - Newton Method-Lagrange multiplier method - Kuhn- tucker conditions . Quasi-Newton method- separable convex programming - Frank and Wolfe method.12	VI G m tu	Nonlinear programming: Non linearity concepts-convex and oncave functions- non-linear programming - gradient and lessian. Unconstrained optimization: First & Second order necessary conditions-Minimisation & Maximisation Local & Global convergence-Speed of convergence. Basic decent nethods: Fibonacci & Golden section search - Gradient nethods - Newton Method-Lagrange multiplier method - Kuhn- ucker conditions . Quasi-Newton method- separable convex programming - Frank and Wolfe method.	12	20
		Cluster Level End Semester Examination		

Course	e No.	Course Name	L-T-P: Year Credits Introdu					
10ME	5103	PRINCIPLES OF MACHINING AND MANUFACTURING SYSTEMS	3-0-0: 3	2015				
Course I Basic Un	-	isites ing of Manufacturing Processes at UG level						
To introd adopted i	Course Objectives To introduce the principles of machining and to equip the students with the manufacturing systems adopted internationally. It aims at developing the necessary skills to work in international factory environments. It also details the importance of flexibility and flexible manufacturing systems. Syllabus							
Single Po	int Tools s-Wear-T	hining- Tool Geometry and Reference Systems-Mechan s-Types and Characteristics of Chips-Cutting Force Mea Tool LifePerformance Evaluation of Manufacturing Systems	surements	-Cutting Tools				
 pr re sc to as in ge ge Reference 	 Expected Outcomes On completion of this course, the students will be able to prepare drawings indifferent reference systems like machine reference system, tool reference system and work reference system for machining. solve specific geometrical problems in Tool geometry involving in machining. to evaluate the performance of manufacturing systems using Lean manufacturing assessment. improve the performance of manufacturing systems using VSM. get the basic idea of Six Sigma to improve the performance of manufacturing systems. References 							
 Ghosh Sharma Askin I sons Inc . ASTM 	 HMT ,Production Technology , Tata Mc Graw Hill Ghosh & Mallik ,Manufacturing Science , affiliated –West Press Sharma P C , A Text book of Production Engineering Askin R G and Gold berg J B "Design and Analysis of Production systems", John Wieley and sons Inc 2003 ASTME ,Fundamentals of Tool Design , Prentice Hall of India Bhattacharya A Metal cutting : Theory and Practice , Central Book Publishers 							
	Course plan							
Module	odule Content Hours Exam Marks (%							
Ι	turning, machin	ing, definition and objectives. Geometry of cutting too milling and drilling - indifferent reference systems like reference system, tool reference system and wo ce system. Sharpening and resharpening of cutting tools	ke 8 rk	15				
П		nism of chip formation by single point tools, drills and cutters. Types of chips and their characteristic		15				

	Effective rake. Mechanics of machining, theoretical estimation and experimental determination of cutting forces and power consumption.					
	First Internal Examination					
ш	Cutting tools; methods of failure, mechanics of tool wear, essential properties, assessment of tool life cutting tool materials and cutting fluids.	8	15			
IV	Flexible Manufacturing Systems (FMS), architecture of FMS,Evaluation of performance measures of FMS, Bottleneck Model, FMS Operation parameters, Extended Bottleneck Model, Sizing of FMS,performance evaluation problems	8	15			
	Second Internal Examination					
V	Performance evaluation of manufacturing systems –Lean manufacturing assessment ,Lean Tools, Value stream Mapping ,OEE ,and six sigma on advanced manufacturing systems DMAIC Methodology,	8	20			
VI	Virtual Organization –Introduction to virtual Manufacturing and its applications	8	20			
	Cluster Level End Semester Examination					

Course No.	Course Name	L-T-P: Credits	Year of Introduction		
10ME6105	DISCRETE EVENT SYSTEM SIMULATION	3-0-0: 3	2015		
Course Prerequi	sites				
Basic knowledge	of probability and statistics				
Course Objectiv	es				
To understand he	ow computer simulation can be used as an effective	e tool to mod	el and analyze		
complex systems					
Syllabus					
System Modeling	and Analysis - Monte Carlo Simulation - Random N	lumber Genera	ation –		
Analysis of Simu	lation Data- Simulation Languages and Packages- Sin	nulation using	Spreadsheets-		
Simulation of Ma	nufacturing and Material Handling Systems				
Expected Outco	mes				
On successful con	mpletion of the course, the students will have the				
Ability to	model and analyse discrete systems using simulation.				
Ability to	• Ability to use simulation software to carry out projects and case studies.				
References					
1. Jerry Ban	1. Jerry Banks and John S, Carson II "Discrete Event system Simulation", Prentice Hall.				
_	7. David, and Averill M. Law. "Simulation modeling a				

3. F1	3. Francis Neelamkovil, "Computer Simulation and Modelling", John Willey and sons.			
	Course Plan			
Module	Content	Hours	Semester Exam Marks (%)	
Ι	Introduction to systems and modeling - Discrete and continuous system - areas of application –Limitations- Monte Carlo simulation	6	15	
II	Discrete event simulation and their applications- Queuing and inventory problems- Simulation as a decision making tool	10	20	
	First Internal Examination			
ш	Random numbers-Techniques for generating random numbers- Linear congruential method-Test for random numbers- Frequency and run tests- Tests for autocorrelation- Random variate generation- Inverse transformation technique.	8	15	
IV	Analysis of simulation data Data collection- Identifying the distribution with data-Goodness of fit tests-Verification and validation of simulation models	8	15	
	Second Internal Examination			
V	Simlation languages and packages – Simulation using spreadsheets – Simulation optimization	6	15	
VI	Simulation of manufacturing and material handling systems- Performance analysis of flow shop and job shopsystems- Modelling of supply chains- Case studies.	10	20	
	Cluster Level End Semester Examination			

Course No.	Course Name	L-T-P: Credits	Year of Introduction	
10ME6107	PRODUCTION AUTOMATION AND TRENDS IN MANUFACTURING	3-0-0: 3	2015	
Course Prerequi	isites			
Fundamental kno	wledge in Manufacturing systems is desirable.			
Course Objectiv	es			
To learn the concepts of automation, Discrete Control Systems, Advanced Manufacturing				
Processes, Comp	uterized Numerical Control Technology.		_	
Syllabus				
Concept and scope of industrial automation- Industrial Robots-Discrete Control, PLC, CNC				
systems, Part Pro	gramming, APT programming, Latest trends in Manu	facturing.		

Expected Outcomes

After completing the course, the students will be able to identify and describe the different areas of production automation and conversant with the latest trends in manufacturing.

References

- 1. Serope Kalpakjian,, "Manufacturing Processes for Engineering Materials", Addision Wesley
- 2. Serope Kalpakjian, Schmid., "Manufacturing Engineering and Technology", Prentice Hall
- 3. Radhakrishnan, P., "Computer Numerical Control Machines", New Central Book Agencies
- 4. Mikell P. Groover., "Automation, Production Systems and Computer Integrated Manufacturing", Prentice Hall.

Course Plan				
Module	Content	Hours	Semester Exam Marks (%)	
Ι	Concept and scope of industrial automation – Sensors, Actuators and other control system components.	8	15	
II	Industrial Robotics- Robot anatomy-Robot control systems- Sensors in robotics. Concepts of discrete control, Programmable Logic Controllers.	8	15	
First Internal Examination				
ш	Concepts, features, fundamentals, components, classification, Design considerations of NC machine tools –Tooling, Maintenance of CNC machines.	8	15	
IV	Controls and System devices - Control loops of NC system, Reference pulse and sampled data techniques – CNC adaptive control – ACO and ACC systems.	8	15	
	Second Internal Examination			
V	Fundamentals of part programming. Manual part programming, Computer aided part programming - APT programming	8	20	
VI	Concepts of GT, FMS, CIM. Additive manufacturing concepts, Green and sustainable manufacturing. Latest trends and developments in Manufacturing.	8	20	
	Cluster Level End Semester Examination			

Course No.	Course Name	L-T-P- Credits	Year of Introduction		
10ME6113	THEORY OF VIBRATION	2 - 1 - 0 - 3	2015		
Prerequisites					
Engineering Me	echanics-Statics and dynamics (basics), Strength of m	aterials (basics	5).		
Objectives To help the students fully understand and appreciate the importance of mechanical vibrations.					

To enable them acquire the skill to develop mathematical models and analyse the vibration of mechanical systems.

Syllabus

Single degree-of-freedom systems-Undamped and damped free vibration problems, Forced response of undamped and damped systems, Vibration isolation and base excitation cases, Duhamel's integral and transient response, periodic excitation inputs, Instrumentation for vibration measurements.

Two degree-of-freedom systems-Vibration absorber. Multi degree-of-freedom systems, coordinate transformation, definition of normal modes and modal coordinates, modal superposition based free and forced vibration responses, proportional and non-proportional damping. Continuous systems-Axial, bending and torsional vibration of bars and beams.

Expected Outcomes

The students will be able to:

- 1. understand the concepts of vibration modes and natural frequencies.
- 2. predict the dynamic behaviour of mechanical systems using simple models.

References

- 1. Leonard Meirovitch, *Elements of vibration analysis*, Tata McGraw-Hill Publishing Company Ltd., 2007
- 2. William T Thomson, *Theory of vibration with applications*, Marie Dillon Dahleh, Pearson Education, Inc., 1998.
- 3. Singiresu S. Rao, Mechanical Vibrations, Pearson Education, Inc., 2011
- 4. Mallik A.K., Principles of vibration control, East-West Press Pvt. Ltd., New Delhi, 1990.

Course Plan				
Module	Content	Hour s	Semester Exam Marks (%)	
Ι	Single degree-of-freedom systems- Undamped and damped free vibration problems, Forced response of undamped and damped systems	8	15	
Π	Vibration isolation and base excitation cases, Duhamel's integral and transient response, Periodic excitation inputs,	8	15	
	First Internal Examination			
III	Instrumentation for vibration measurements, Two degree-of- freedom systems-Vibration absorber	8	15	
IV	Multi degree-of-freedom systems, coordinate transformation, definition of normal modes and modal coordinates	8	15	
	Second Internal Examination			
V	Modal superposition based free and forced vibration responses, proportional and non-proportional damping	8	20	
VI	Continuous systems-axial, bending and torsional vibration of bars and beams.	8	20	
	Cluster Level End Semester Examination			

Course	e No.	Course Name		T-P: redits	Year of Introduction	
10ME	6115	FRACTURE MECHANICS AND FATIGUE		-0:3	2015	
	Course Prerequisites A course on Mechanics of Solids at the UG level					
	D bjectives					
		c knowledge on fracture mechanics and to facilitate	the i	incorpora	ation of cracks	
	Ŭ	neering design				
Syllabus		o Cracks – Fracture Criterion – Stress Analysis – P	lastic	zone –	Elastic-Plastic	
		nics – Fatigue and Fatigue Crack Growth - Linea				
		c Fracture – Experimental Determination of dynamic				
-	l Outcom					
-		he course, the students are expected to				
		with the therories of failure inderstand the science of failure and steps for its mitig	natio	n		
		chanical systems overcoming the problems of fatigue	-			
		ally determine stress intensity factors	und i	unures		
Referenc						
		Engineering Fracture Mechanics", Elsevier, 1996				
		Elementary Engineering Fracture Mechanics", Noord		1995.		
3. Karen	Hellan, "I	ntroduction to Fracture Mechanics", Mc Graw Hill, 1	982.			
		Course plan				
Module		Content		Hours	Semester Exam Marks (%)	
I	criterion Griffith'	tion -sources of micro and macro cracks - frac based on stress concentration and theoretical strer s energy - various approaches - Stress Analysis s with Cracks.	ngth	8	15	
II		ip Plastic Zone: Plastic zone estimation - yield mechanics.	ling	8	15	
		First Internal Examination				
	Elastic–I J-integra	Plastic Fracture Mechanics - Path-independent integral, J-integral fracture criterion, crack oper		0	15	
Ш		ment(COD), experimental determination of J inte D - Fatigue and Fatigue crack growth rate.		8		
		tatic fracture Mechanics Design Concepts - Introduct	ion,			
IV	the stress problems	s criterion, strain energy density, 2-D linear elastic cr s.	ack	8	15	
		Second Internal Examination			T	
V		c Fracture: Mohr's model, strain energy release ra ranching, practical applications of crack arrest		8	20	

	techniques.		
VI	Experimental determination of dynamic SIFNDT and Fracture Mechanics	8	20
Cluster Level End Semester Examination			

Course	e No.	Course Name	L-T-P: Credits	Year of Introduction	
10ME	6117	MECHANICS OF COMPOSITES	3-0-0: 3	2015	
Course P					
		have basic knowledge on mechanical engineering at U	G level		
Course C			1 .1		
		edge on advanced composite material and its properties	s and method	of fabrication	
and analy Syllabus					
•		mposites- Micromechanics of composites- Ply mech	anics- Static	and dynamic	
		ated composite structures- Analysis of impact on lar			
composit				5	
Expected	l Outco	mes			
-		the course, the student will be able to			
		d the different types of composites and their application	ıs		
		d the micromechanics of composites			
		tatic and dynamic analysis of composite structures			
		mart composite structures			
Reference		James Machanics of commonite motorials Seriets Dec	le Commones		
		Jones, Mechanics of composite materials, Scripta Boo Gibson, Principles of Composite Material Mechanics,	1 2	on	
2. 10		Course plan			
				C	
Module		Content	Hours	Semester Exam Marks (%)	
Ι		ion of composites; Classification and Applications	8	15	
		nechanics of composites: effective properties of long an			
II		fiber reinforced composites, effective strength		15	
	-	sites, effective properties of piezoelectric fiber reinforce	ed	10	
composites;					
	First Internal Examination Ply mechanics; Macrobehaviour of laminate- classical				
	2	tion theory –Stress distribution through the thickness	c.	15	
III		nechanics of laminated composite structures: description		1.5	
		nates, laminate moduli,			

IV	Static and dynamic analysis of laminated composite structures (beams, plates and shells) using shear deformation theories, failure theories,	8	15	
	Second Internal Examination			
V	Analysis of impact on laminates	8	20	
VI	Analysis of smart composite structures.	8	20	
Cluster Level End Semester Examination				

Course No.	Course Name	L-T-P: Credits	Year of Introduction		
10ME6119	ADVANCED MECHANICS OF SOLIDS	3-0-0 :3	2015		
Course Prerequ					
v	of mechanics of solids at the UG level				
	es tudents to understand the complex theories and pr lids which shall help them in engineering design	actices related	to advanced		
Syllabus	· · · · · · · · · · · · · · · · · · ·				
2	s and strains- linear elasticity – solutions- energy methods cylinders, curved beams on elastic foundation – tors				
Expected Outco	mes				
On successful co	mpletion of the course, the students should be able to				
Apply the	theory of stress and strain in engineering design				
Solve pro	blems on liner elasticity				
Design an	d analyse thik cylinders, rotating discs and curved bea	ms			
Apply the	principles of torsion in non circular cross-sections				
Understar	d the various theories of failure				
and Strain,	ilips and Tsao, Introduction to the Theoretical and Exp McGraw Hill; New York.		lysis of Stress		
	o S and Goodier J N, Theory of Elasticity, McGraw H				
	Foundations of Solid Mechanics, Prentice Hall of Indi				
4. Boresi A.P. Wiley.	Schmidt R J and Sidebottom O M, Advanced Mechan	ncs of Material	s, John		
	5. Fenner R T, Engineering Elasticity Application of Numerical and Analysis Techniques, Ellis Hordwood Ltd				
Course plan					
Module	Content	Hour s	Semester Exam Marks (%)		

I	Theory of stresses and strains. Introduction of tensors. Constitutive modeling.	8	15	
Π	Linear elasticity. Solutions of plane problems. Solutions using polynomials.	8	15	
	First Internal Examination			
Ш	Energy methods. Introduction to finite deformation, plasticity, stability, vibration, and wave propagation.	8	15	
IV	Application to thick cylinders, rotating discs, curved beams, beams on elastic foundations,	8	15	
	Second Internal Examination			
V	Torsion of non-circular cross-sections, stress concentration problems, Hertzian contact stresses.	8	20	
VI	Theories of failures. Static failure theories. Fatigue failure theories. Case studies, Design for fatigue	8	20	
	Cluster Level End Semester Examination			

Course No.	Course Name			Name	Year of Introduction		
10GN6001	RESEARCH METHODOLOGY	0 - 2 - 0 - 2	2015				
Course Prerec		<u> </u>					
	l of analyzing data earned through the project work at U						
	wledge in technical writing and communication skills ea	rned through	seminar at UG				
level.							
Course Object							
	stand the methodology of doing research;	• 1 4	.,.				
	p skills related to professional communication and techr	-	-				
	I type course, this course is expected to be more						
v	from the learners are expected which encourages self-s painly performs a facilitator's role	iuay ana gro	up asscussions.				
Syllabus	unity performs a facilitator s role						
	esearch methodology - research process - scientific met	hods -researc	h problem and				
	rch design process - formulation of research task, liter		-				
-	•						
-	lem solving approaches - experimental research - ex	-					
	orting and presentation - interpretation and report wr	• •	-				
writing- form	at of reporting, oral presentation - seminars and conference	ences, Resear	ch proposals -				
research paper	writing - publications and ethics - considerations in pub	olishing, citati	on, plagiarism				
and intellectu	al property rights. Research methods - modeling and	simulation -	mathematical				
	raphs - heuristic optimization - simulation modeling						
		validity – reliability – scaling - sample design - data collection methods and data analysis.					
			11y515.				

The students are expected to :

(1) Be motivated for research through the attainment of a perspective of research methodology;

(2) Analyze and evaluate research works and to formulate a research problem to pursue research;

(3) Develop skills related to professional communication, technical report writing and publishing papers.

References

- 1. C.R Kothari, *Research Methodology : Methods & Techniques*, New Age International Publishers
- 2. R. Panneerselvam, *Research Methodology*, Prentice Hall of India, New Delhi, 2012.
- 3. K. N. Krishnaswamy, Appa Iyer Sivakumar, and M. Mathirajan, *Management Research Methodology, Integration of Principles*, Pearson Education.
- 4. Deepak Chawla, and MeenaSondhi, *Research Methodology Concepts & Cases*, Vikas Publishing House.
- 5. J.W. Bames, *Statistical Analysis for Engineers and Scientists*, McGraw Hill, New York.
- 6. Schank Fr., Theories of Engineering Experiments, Tata McGraw Hill Publication.
- 7. Willktnsion K. L, Bhandarkar P. L, Formulation of Hypothesis, Himalaya Publication.
- 8. Douglas C Montgomery, Design and analysis of experiments, Wiley International
- 9. Ranjit Kumar, Research Methodology : A step by step guide for beginners, Pearson Education.
- 10. Donald Cooper, Business Research Methods, Tata McGraw Hill, New Delhi.
- 11. Leedy P D, *Practical Research : Planning and Design*, 4th Edition, N W MacMillan Publishing Co
- 12. Day R A, How to Write and Publish a Scientific Paper, Cambridge University Press, 1989
- 13. Coley S M and Scheinberg C A, Proposal Writing, 1990, Newbury Sage Publications.
- 14. Sople, *Managing Intellectual Property: The Strategic Imperative*, Prentice Hall of India, New Delhi, 2012
- 15. Manna, Chakraborti, Values and Ethics in Business Profession, Prentice Hall of India, New Delhi, 2012.
- 16. Vesilind, Engineering, Ethics and the Environment, Cambridge University Press.
- 17. Wadehra, B.L. Law relating to patents, trademarks, copyright designs and geographical indications, Universal Law Publishing

Course plan				
Module	Content	Hours	Semester Exam Marks (%)	
I	Overview of Research Methodology : Research concepts, meaning, objectives, motivation, types of research, research process, criteria for good research, problems encountered by Indian researchers, scientific method, research design process.	5	15	
п	Research Problem and Design : Formulation of research task, literature review, methods, primary and secondary sources, web as a source, browsing tools, formulation of research problems, exploration, hypothesis generation, problem solving approaches, introduction to TRIZ (TIPS), experimental research, principles,	5	15	

	laboratory experiment, experimental designs, ex post facto		
	research, qualitative research.		
	First Internal Examination		
ш	Thesis Writing, Reporting and Presentation : Interpretation and report writing, techniques of interpretation, precautions in interpretation, significance of report writing, principles of thesis writing, format of reporting, different steps in report writing, layout and mechanics of research report, references, tables, figures, conclusions, oral presentation, preparation, making presentation, use of visual aids, effective communication, preparation for presentation in seminars and conferences.	4	15
IV	Research proposals, Publications, Ethics and IPR : Research proposals, development and evaluation, research paper writing, layout of a research paper, journals in engineering, considerations in publishing, scientometry, impact factor, other indexing like h-index, citations, open access publication, ethical issues, plagiarism, software for plagiarism checking, intellectual property right (IPR), patenting case studies.	5	15
	Second Internal Examination		
V	Research Methods - Modeling and Simulation : Modeling and simulation, concepts of modeling, mathematical modeling, composite modeling, modeling with ordinary differential equations, partial differential equations (PDE), graphs, heuristics and heuristic optimization, simulation modeling.	5	20
VI	Research Methods - Measurement, Sampling and Data Acquisition : Measurement design, errors, validity and reliability in measurement, scaling and scale construction, sample design, sample size determination, sampling errors, data collection procedures, sources of data, data collection methods, data preparation and data analysis.	4	20
	Cluster Level End Semester Examination		

Course No.	Course Name	L-T-P: Credits	Year of Introduction	
10ME6109	SEMINAR – 1	0- 0-2: 2	2015	
Course Prerequisites (1) The habit of reading technical magazines, conference proceedings and journals; (2) Basic knowledge in technical writing and communication skills earned through seminar at UG				

(2) Basic knowledge in technical writing and communication skills earned through seminar at UG level.

Course Objectives

(1) To enhance the reading ability required for the literature review regarding the project work;

(2) To develop skills regarding professional communication and technical report writing.

Guidelines

The student shall prepare a paper and present a seminar on any current topic related to the branch of specialization under the guidance of a staff member. The student will undertake a detailed study based on current published papers, journals, books on the chosen subject and submit seminar report at the end of the semester. The student shall submit a printed copy of the paper to the Department. Grades will be awarded on the basis of the contents of the paper and the quality of presentation. A common format (in PDF format) shall be given for students for preparing the report. All such reports submitted by students shall be in this given format, for uniformity.

Expected Outcomes

The students are expected to :

(1) Be motivated in reading which enhances the literature review required for doing project work;

(2) Develop skills regarding professional communication and technical report writing.

References

- 1. M. Ashraf Rizvi, Effective Technical Communication, Tata McGraw Hill, New Delhi, 2005
- 2. Day R A, How to Write and Publish a Scientific Paper, Cambridge University Press, 1989
- 3. Coley S M and Scheinberg C A, Proposal Writing, 1990, Newbury Sage Publications.

Course plan				
Item	Description	Time		
1	Abstract Submission	3 Weeks		
2	Allotment of Topic and Scheduling Seminars	2 Weeks		
3	Presentation Sessions	4 Weeks		
4	Report Submission	4 Weeks		
5	Publishing Grades	2 Weeks		

Course No.	Course Name	L-T-P: Credits	Year of Introduction		
10ME6111	ENGINEERING SOFTWARE LAB	0-0-2: 1	2015		
Course Prereq	uisites				
Basic knowled	dge of simulation design and analysis software at UG lev	vel			
Course Object	ives				
To get the stu	idents acquainted with the state of the art software for	data analysi	s, optimization		
and modeling	and analysis of mechanical engineering problems				
Expected Outcomes					
The students are expected to have the					
• Ability to use simulation and optimization software to solve different engineering problems.					
-	 Ability to design and analyse components and systems. Ability to carry out data analysis using statistical packages. 				
List of Experim	ents				
1. Simulati etc	1. Simulation of engineering and manufacturing systems using tools like ARENA, WITNESS				

- 2. Modeling and optimization of linear and non-linear engineering problems using tools like LINGO,LINDO etc
- 3. Design and modeling of engineering components and systems using high end software like Pro/E, CATIA, UNIGRAPHICS, SolidWorks etc
- 4. Engineering analysis of components and systems using high end software like ANSYS, ABAQUS, Pro/E, CATIA, UNIGRAPHICS, SolidWorks etc
- 5. Using project management tools like Primavera, MSProjectetc
- 6. Using software like MATLAB, Scilabetc, for special problems in Mechanical Engineering
- 7. Data analysis using SPSS, MINITAB etc

SEMESTER II

Course No.	Course Name	L-T-P: Credits	Year of Introduction			
10ME6202	MODELING AND ANALYSIS OF MANUFACTURING SYSTEMS	3-1-0:4	2015			
Course Prere	uisites ge in Manufacturing/Production Engineering at UG level					
Course Objec						
	e basic ideas to enable the modelling, simulation a	and analysis	of advanced			
Syllabus						
-	anufacturing systems; Types of manufacturing models; A	•	-			
•	xible manufacturing systems; Group technology; Coding	schemes; Ma	terial			
handling system						
Expected Out	comes letion of the course the student should be able to:					
-	dently conduct a study of a manufacturing system					
-	simulate, analyze and optimize the manufacturing system					
	and design modified/new system for better performance	L				
References						
	G. Askin and Charles R. Standridge Modeling and	analysis of t	nanufacturing			
	John Wiley & Sons Inc.					
	M.P. Automation Production Systems and Computer	Integrated 1	Manufacturing			
	e-Hall of India Pvt. Ltd.	o Drogg Ino				
	. Handbook of Flexible Manufacturing Systems Academi ian Manufacturing Engineering and Technolog Addison-		shing Co			
T. TKulpuk	Course Plan	westey ruon	shing eo.			
	Course r lan		Semester			
Module	Content	Hours	Exam Marks (%)			
	duction to manufacturing systems models, types a pipes of manufacturing systems, manufacturing mod	elc	15			
type	types and uses physical models, mathematical models, model uses, model building, numerical problems/simulation exercises.					
Intro CO	duction to assembly lines, line balancing algorith ISOL random sequence generation, ranked position ht, heuristics, optimal solutions, practical issues, mix	ms, onal				
	els, sequencing un-paced lines, shop scheduling with ma		15			
	ucts, order release, flow shop sequencing, single and t		15			
	nine flow shops, job shop scheduling, dispatching rules					
	dule generation, numerical problems/simulation exercise					
	First Internal Examination					

ш	Introduction to FMS, components of FMS machines, part movement system, work stations, system controller, planning and control hierarchy, system design, system set up, scheduling and control, flexible assembly system.	8	15
IV	Group technology principles, coding schemes, assign machines to groups, production flow analysis, binary ordering algorithm, assigning parts to machines.	8	15
	Second Internal Examination		
v	Introduction, types and principles of material handling systems, equipment selection, conveyor analysis, closed loop conveyor, AGV systems, design and operation of AGVs vehicle, requirements, analysis, pallet sizing and loading, use of petrinets.	12	20
VI	Introduction to warehousing and storage and retrieval system, warehouse components, warehouse design, stacking pattern, location in warehouses, dedicated storage, open storage, class base storage, storing complementary items, order picking, forming pick list, pick sequencing.	12	20
	Cluster Level End Semester Examination		

Course No.	Course Name	L-T-P: Credits	Year of Introduction		
10ME6104	INTELLIGENT MANUFACTURING	3-0-0 : 3	2015		
Course Prerequi					
Ŭ	of computer aided manufacturing at UG level				
Course Objectiv	es				
 To impart 	basic ideas of intelligent manufacturing systems				
• To focus	on cell and part family formulation				
 To familia 	arize the concepts of Computer Integrated Manufactu	ring and Grou	p Technology		
Syllabus Intelligent mar demonstration of approach, linear and CAD,CAPI models and algo					
 References Andre Kusaic, "Intelligent Manufacturing Systems". Mikell P Groover, "Automation Production systems, Computer Integrated Manufacturing", Prentice Hall. Yagna Narayana., "Artificial Neural Networks ". Andrew.S.Tanenbaum, " Computer Networks ", Prentice Hall 					

Expected Outcomes

On completion of this course, the students will be able to

- Understand the globally adopted manufacturing systems.
- Solve specific problems in machining by using different Layouts and Group Technology.
- Produce different part families to improve the performance of manufacturing systems.
- Get familiarized with new modern methods and tools used for design and control of manufacturing systems with respect to automated manufacturing.
- Get the basic idea of Coding methods.

Course Plan				
Module	Content	Hours	Semester Exam Marks (%)	
I	Intelligent manufacturing-system components-system architecture and data flow, system operation. World Class Manufacturing and Organizational Restructuring, ways of performing manufacturing work, Common type of facility layout, Variety/volume trade-off, cellular manufacturing system	8	15	
п	Numerical Demonstration of Effect of Setup Time Reduction on WIP and Waiting Time Demonstration Using Mathematical Model ,Production Flow Analysis Machine-Part Matrix some results for single server Markovian queuing system (m/m/1 queue), Factors to be Considered for Cell and Part Family Formation,	8	15	
First Internal Examination				
III	Key machine approach Nonlinear Model: Cell Formation 0-1Integer Programming Formulation Cellular manufacturing and pull production, design of work cells and cellular manufacturing	8	15	
IV	Computer integrated manufacturing systems-structure and functional areas of CIM system-CAD, Variant Process Planning ,CAPP,	8	15	
	Second Internal Examination			
V	Group technology (GT)-part classification and coding systems- opitz system, difference between opitz and multicode systems. Part Family Formation When Codes Available, Similarity Coefficient-Based Clustering Binary Ordering Algorithm, Rank order clustering	8	20	
VI	Group technology-models and algorithms-visual method-coding method, cluster analysis method, similarity coefficient method, sorting-based algorithm,	8	20	
	Cluster Level End Semester Examination			

Course	e No.	Course Name	L-T-P: Credits	Year of Introduction			
10ME	5106	MICRO AND NANO MACHINING	3-0-0:3	2015			
	Course Prerequisites Basic knowledge on different types of machining processes.						
	Course Objectives						
To enable Syllabus	e the student	s to understand different types of micro and nano	machining	processes.			
Introduct machinin Electroch and cher processin Expected On succe • G • U • E Reference 1. McG	Introduction: Definition of micro-machining and nano-machining, Nanotechnology. Micro- machining processes - Mask-based methods &Tool based micro-machining methods. Electrochemical, Nano-mechanical, Nano-physical and Nano-chemical processes. Nano-physical and chemical processing of atomic bits: electron and ion beam processing, plasma surface processing, principles of chemical and electro-chemical processing. Nano processing systems. Expected Outcomes On successful completion of the course, the students will be able to • Gain good understanding of micro and nano machining processes • Undertake tool based machining methods with perfection • Execute special nano processing systems like diamond turning, nano-grinding etc References 1. McGeough J., <i>Micromachining of engineering materials</i> , Marcel Dekker, Inc. NY, 2002. 2. Taniguchi N., <i>Nanotechnology: Integrated processing systems for ultra-precision and</i>						
	1 7	Course plan					
Module		Content	Hour	s Semester Exam Marks (%)			
Ι		n: Definition of micro-machining and na Nanotechnology.	no- 8	15			
II	ion beam	hining processes: Mask-based methods: Wet etchi machining, LIGA, laser beam machining, plas ectroforming.		15			
		First Internal Examination					
ш	milling, j	ed micro-machining methods: cutting, grindi punching, pressing, EDM, ECM, laser be , electron beam machining, ion beam machining.	am 8	15			
				1			
IV	chemical p Methods a atomic cl	mical, Nano-mechanical, Nano-physical and Na rocesses, benefits. and mechanism of nano-mechanical processing usters: size effect, specific energy, atomic , nano-indentation.	of 8	15			
IV	chemical p Methods a atomic cl processing	rocesses, benefits. and mechanism of nano-mechanical processing usters: size effect, specific energy, atomic	of 8 bit	15			

VI	Nano processing systems: Diamond turning, Nano-grinding, Precision polishing.	8	20		
	Cluster Level End Semester Examination				

Course	No.	Course Name	-T-P: redits	Year of Introduction				
10ME6	6114	SOFT COMPUTING TECHNIQUES 3-(0-0:3	2015				
	Course Prerequisites							
	-	of operations research and computer programming.						
Course O To unders systems.		d appreciate the application of various soft computing tec	chniques	in engineering				
Syllabus								
	orial op	timization – Evolutionary methods – Genetic algorithm – s	ingle and	multi-				
objective	applicat	ions -Simulated annealing-Fuzzy logic - Artificial neural n	etworks.					
Expected								
		mpletion of the course, the students are expected to solve co	ombinator	rial				
-	-	lems using the following tools-						
		lgorithm for single objective and multiobjective optimisation	on					
		Annealing						
	zzy Log							
• Al		Neural Network						
4. De	eb, Kal	yanmoy, <i>Optimization for engineering design: Algorithm</i> Pvt. Ltd., 2012.	ns and e	xamples. PHI				
5. De	•	anmoy, Multi-objective optimization using evolutionary d	algorithm	s. John Wiley				
A	ddison-	D.E., Genetic Algorithms in Search, Optimization, and Wesley, 1989.						
		,R.J., Artificial Neural Networks, McGraw-Hill Companies	,					
		varan, K., A Learner's Guide to Fuzzy Logic Systems, Ja	aico Publ	ishing House,				
	05.	ware D. Artificial Normal Networks Drantice Hell of Ind	lia 1000					
9. Y	egnanar	ayanan, B., Artificial Neural Networks, Prentice Hall of Ind	na, 1999					
		Course plan						
		2		Semester				
Module		Content	Hours	Exam Marks (%)				
Ι		ction to combinatorial optimization – Meta heuristics- c algorithm -Terminology of GA – Strings - Coding -	8	15				
		function - GA operators - Algorithm		10				
Π		bjective genetic algorithm – Weighted sum approach –	8	15				
I								

	Algorithm for non-dominated solutions – Diversity preserving mechanism		
	First Internal Examination		
Ш	Simulated Annealing: Introduction - Algorithm - Applications	6	15
IV	Fuzzy Logic: The concept of uncertainty and associated solutions - Fuzzy sets - Basic properties and characteristics of fuzzy sets - Fuzzy set operations - Fuzzy reasoning - Major components of a fuzzy logic system - Design aspects of fuzzy systems - Applications of fuzzy logic	10	15
	Second Internal Examination		
V	Artificial Neural Networks (ANN): Characteristics of ANN - Terminology -Models of neuron – Topology - Basic learning laws - Overview of neural computing - Neural approaches to computing - Engineering approaches to computing	8	20
VI	ANN's learning approches - Training set and test set - Generalization - Learning curves - Applications of ANN in optimization - Simple examples	8	20
	Cluster Level End Semester Examination		

Course No.	Course Name	L-T-P: Credits	Year of Introduction
10ME6116	DESIGN OF EXPERIMENTS	3-0-0:3	2015
Prerequisites			
Fundamentals of	statistics at the UG level		
Objectives			
This course expo	ses the students to the basic statistical concepts, sa	mpling techni	ques, principles
and applications of	of Design of Experiments.		
Syllabus			
	n of experiment; strategy, principle and applicat		
randomization R	estricted randomization- Testing significance o	f effects in	a 2 ^k factorial
experiment-Deve	loping a mathematical model - Experiments with	single factor	rial design and
application of AN	OVA- 2k and 3k factorial design		
Expected Outcom	nes		
On completion of	this course, the students will able to		
Conduct t	he experiments using factorial designs.		
• Get the ba	sic idea of Factorial design, 2k and 3k factorial desig	n; blocking ar	nd confounding
technique	s in 2k factorial design.	_	_
• Get famili	arized with the purpose of randomization.		
Interpret e	experimental results		

References

- 1. Lawson, J. & Erjavec, J., "Modern Statistics for Engineering and Quality Improvement ", Thomson Duxbury, Indian EPZ edition
- 2. Nibtginertm Diygkas C, "Design and Analysis of Experiments". Fifth ed,-John Wiley & Sons
- 3. Box, George E P, Hunter William G, Hunter Sturat J : "Statistics for Experimenters" John Wiley & Sons
- 4. Douglas C. Montgomery, "Design and Analysis of Experiments", 8th Edition, , John Wiley

Course Plan				
Module	Content	Hours	Semester Exam Marks (%)	
Ι	History of design of experiment; strategy, principle and application of DOE; basic statistical concepts, sampling techniques and distributions; inferences about means and standard deviations and considerations of different hypothesis; Experiments with single factorial design and application of ANOVA; randomized blocking and Latin squares.	6	15	
п	An Introduction to Design of Experiments; The problem of interpreting experimental results; The purpose of randomization; A rationale for randomization, Restricted randomization.	6	15	
	First Internal Examination			
III	Hypothesis Testing rationale; Comparing two methods experimentally; Introduction to Factorial Experiments and DOE Terminology; Yate's algorithm for calculation of effects in a 2^k design; Testing significance of effects in a 2^k factorial experiment; Normal Probability Plot on ordinary graph paper.	8	15	
IV	Developing a mathematical model; Residual Analysis, testing for model adequacy; Finding the Alias Structure of a Fractional Factorial; strategy, principle and application of DOE; basic statistical concepts, sampling techniques and distributions	8	15	
	Second Internal Examination			
V	Inferences about means and standard deviations and considerations of different hypothesis; Factorial design, 2k and 3k factorial design; blocking and confounding techniques in 2k factorial design;	8	20	
VI	Concept of fractioning of factorial design; Response surface method; Introduction to robust design, robust parameter design for single response system; Experiments with non-normal data.	8	20	
	Cluster Level End Semester Examination			

Course	No.	Course Name	L-T-P: Credits		Year of roduction
10ME6	118	MANAGEMENT INFORMATION SYSTEM	3-0-0 : 3		2015
Course P Basic kno	-	isite: on computer programming and management at UG	level		
Managem	rse con ent Inf	re: nprises an introduction to the foundations, technormation Systems (MIS). It is intended to provide a hich IS professionals perform specific technical tasks	critical uno		
Cycle – S and Mode Technique software of	on to ystem els - In es - In organiz on proo	Management Information Systems – Information Requirements Specification documents – Data Flow roduction to data structures and relational database troduction to Capability Maturity Model(CMM) a ations – Software Testing – Software Reliability - Sy redures - Multimedia technology, Distributed data m	Diagrams – Modern nd Quality ystem impl	– Decia Softwa Mana ementa	sion Tools are Design gement in tion issues
 U1 Ga De 	etion onderstand ether ar design and	mes: If the course, the students are expected to have the about the basic components of a management information d document the system requirements and develop an Information System lement and maintain a management information system	on systems		
Son	ch and s, New /ryszki	s: Gruditski, Information Systems-Theory and Practice, York, 1989. ewycz, I.T., Introduction to Systems Analysis and De			-
4. Luca McC	as, Hen Graw H	rville, Software Engineering, 6 th . Edition, Pearson Edition, Pearson Edition, Pearson Edition, Analysis, Design, and Implementation of Infoniell, New York, 1992.	rmation Sys	stems, 4	th
5. O'Bi	rien J.A	., Management Information Systems, 4/e, Tata McG Course Plan	raw Hill, 1	999	
Module		Contents		ntract ours	Semester Exam marks %
I	inforn databa inforn	se, and control blocks, System view of business action system design forces, Information system pment life cycle, Information systems for stra	logy, and stems	8	15
II		n Investigation and requirements engineering, Sys	4	8	15

	requirements specification documents, Feasibility studies, System analysis and general system design, Charting tools in data base design, Data flow diagrams and E-R diagrams, Decision tools and models, Prototyping, Detailed system design, Form design, Code design, Database normalisation,		
	Introduction to data structures and relational database. First Internal Examination		
III	Modern software design techniques, Verification and validation methods, Performance of software systems, Software metric and models, Software standards, Introduction to Capability Maturity Model(CMM) and Quality Management in software organizations.	10	15
IV	Software testing, Review, walkthrough and inspection, Testing approaches, Software reliability, Errors, faults, repair and availability, Reliability and maintenance.	6	15
	Second Internal Examination		
V	System implementation issues and solution procedures, training and post implementation audit, System fine-tuning, Monitoring and updating.	8	20
VI	Multimedia technology, Distributed data management, Data mining and warehousing, Security features in global information systems.	8	20
	Cluster Level End Semester Examination		

Course No.	Course Name	L-T-P: Credits	Year of Introduction	
10ME6122	QUALITY AND RELIABILITY ENGINEERING	3-0-0:3	2015	
Course Prerequi	isites			
Fundamental kno	wledge in probability theory and statistics is desirable	•		
Course Objectiv	es			
To learn in depth	the quality and reliability aspects with emphasis on	an industrial	organizational	
environment.				
Syllabus				
	lity Control-Total Quality management-QMS-IS0			
methods-Six sign	na concepts- Design of experiments- Reliability- To	tal Productive	e Maintenance-	
Reliability manag	gement.			
Expected Outco	mes			
After completing	the course, the students will be able to			
• Identify and describe various areas in the quality control and reliability engineering fields.				
• Plan and design a quality control program in an industry/organization.				
• Estimate the reliability of complex engineering systems				

• Gain good understanding of the principles of total productive maintenance

References

- 1. Dale H; Besterfield, Total quality Mangement, Pearson Education Inc
- 2. Caplen, Practical Approach to Quality Control, Random House
- 3. O'Connor, Practical Reliability Engineering, John Wiley and Sons
- 4. Ryan, Statistical Methods for Quality Improvement, John Wiley and Sons
- 5. Ross, Taguchi Techniques for Quality Engineering, McGraw Hill Publishers
- 6. Douglas C. Montgomery. Design and Analysis of Experiments, John Wiley and Sons
- 7. Balaguruswami E., Reliability Engineering, Tata Mc Graw Hill Publishing Co. Pvt Ltd

Course plan				
Module	Content	Contact Hours	Semester Exam Marks (%)	
Ι	Basic concepts and definition, Traditional Quality Control, Total Quality management, Deming's principles, Customer focus, Employee involvement, Continuous process improvement, PDCA cycle	8	15	
II	Seven step process, Kaizen, Quality measurements, Quality costs, QFD, QMS-ISO9000 standards-requirements and documentation, Taguchi methods, quality loss function, Parameter design and Tolerance design concepts	8	15	
	First Internal Examination			
ш	Six sigma concepts –define and measure phase, flow charting, basic tools, probability and hazard plotting, Six sigma measurements, basic control charts and process performance matrices, Measurement systems analysis.	8	15	
IV	Design of experiments-basics, single factor, two factor experiments. ANOVA, Taguchi approach to design of experiments, orthogonal arrays, Signal to noise ratio, RSM- concepts and methods.	8	15	
	Second Internal Examination			
V	Fundamental aspects of reliability, Reliability mathematics, Reliability testing and evaluation methods. FMEA, Failure data analysis.	8	20	
VI	Total Productive Maintenance, maintainability and Availability Concepts, Reliability management.	8	20	
	Cluster Level End Semester Examination			

Course	e No.	Course Name		Γ-P: edits	Year of Introduction
10ME	6124	PROJECT ENGINEERING AND MANAGEMENT	3-0-	-0:3	2015
Course P Basic kno		sites of Industrial Engineering or Management at the UG Le	vel		
of the pro	rse exam oject ma	es ines project management in theory and practice and th nager. The course offers a practical approach to mana ing, and controlling the efforts of the project.			
Estimatio	on - Pro	ect Management - Project Management Concepts and oject Planning and Scheduling- Resource Constrain ontrol - Management of Special Projects.			
Expected					
-		the course, the students are expected to have			
	-	h understanding of the principles of project management	nt;		
	-	y to lead a project team;			
	-	y to accomplish projects on schedule without cost and t			
		ledge on the procedure for implementing big and specia	al pro	jects.	
Reference 1. Sl		rd and Globerson Project Management: Processes, Met	hodo	logies, an	d
E	conomic	s, 2/E, Prentice Hall Inc, 2005.			
		ject Management Handbook, Gover Publishing Ltd, 19			
		nd King, Project Management Handbook 2 nd Edition, W			
		Levy, A Management Guide to PERT/CPM Prentice H			
		erzner, Project Management: A Systemic Approach to F	Planni	ing, Sche	duling and
		g, CBS Publishers, 2002.			
		nury, Project Scheduling and Monitoring in Practice, So	outh A	Asian Pub	lishers,
D	elhi, 198				
		Course Plan			
Module		Content		Contrac hours	t Semester Exam Marks %
Ι		ction to Project management, Characteristics of project			
		ion and objectives of Project Management, Stages		6	15
		Management, Project Planning Process, Establish	ing	0	15
	_	organization, role of Project Manager			
II		screening and Selection Techniques - Structur	-		
	-	ts and Tools - Work Breakdown Structure, Organisat			
		own Structure, and Linear Responsibility Chart - Proj		10	15
		ng Tools- Bar charts, Line of Balance – Critical P		~	_
		d, and Project Evaluation and Review Technique- R	1SK		
	Analys	is and Management			

	First Internal Examination				
III	Types of Estimates and Estimating Methods- Capital Cost Estimation - Project Budgeting - Project cash flow analysis	6	15		
IV	Project Scheduling with Resource Constraints- Resource Leveling- Resource constrained scheduling with multiple resources- linear programming formulation – Introduction to staff scheduling and rostering	10	15		
	Second Internal Examination				
V	Monitoring Techniques and time control System- Project Cost Control -Time cost Tradeoff procedure, lowest cost schedule- Computer applications in project management	8	20		
VI	Management of Software Engineering Projects, New Product Development Projects, R&D Projects and Large Scale Construction Projects -Case Studies	8	20		
	End Semester Cluster Level Examination				

Course No.	Course Name	L-T-P: Credits	Year of Introduction			
10ME6126	INDUSTRIAL AUTOMATION AND ROBOTICS	3-0-0:3	2015			
Course Prerequi		<u> </u>				
v	in Robotics at UG level					
Course Objectiv						
_	modeling, simulating and analyzing industrial automa	tion and robot	tic systems			
Syllabus						
	duction; Industrial control systems; Fundamentals of		~			
5 1	echnology; Kinematics of manipulator frames and tran	nsformations;	Manipulators;			
Dynamic analysis	3.					
Expected Outco	mes					
After the complet	tion of the course the student should be able to:					
• Independer robotics.	ently study the manufacturing system for potential inc	lusion of autor	mation and			
• Conceive	, design, implement and operate industrial automation	and robotics s	system.			
References						
1. John J. Crai	g Introduction To Robotics Mechanics and Control A	ddison –Wesl	ey.			
2. Saeed B Niku Introduction to Robotics Analysis Systems and Applications. Prentice Hall India.						
 Groover Mikell.P. Automation Production systems and Computer Integrated Manufacturing Prentice hall India. 						
	4. Mark W. Spong & M. Vidyasagar Robot Dynamics and Control John Wiley & Sons.					

Course Plan				
Module	Content	Hours	Semester Exam Marks (%)	
I	Introduction to automation, definition, types, merits and criticism, manufacturing plants and operations, automation strategies, basic elements of automated system, advanced automation functions, levels of automation	6	15	
п	Industrial control systems, process discrete manufacturing industries, continuous and discrete control systems, an overview of computer process control, fundamentals of automated assembly system.	8	15	
	First Internal Examination			
ш	Group technology, part families, part classification and coding, production flow analysis, introduction to robotics, robotics system, classification of robots, robot characteristics, applications of robots.	8	15	
IV	Kinematics for manipulator, frames and transformations, forward and inverse kinematics, DH representation, derivation of forward and inverse kinematic equations for various types of robots.	6	15	
	Second Internal Examination			
V	Introduction to manipulator, jacobian tool, jacobian, velocity propagation from link to link, static forces in manipulators, jacobian in force domain.	10	20	
VI	Introduction to dynamic analysis, lagrangian formulation, trajectory planning, joint space and cartesian space.	10	20	
	Cluster Level End Semester Examination			

Course No.	Course Name	L-T-P: Credits	Year of Introduction	
10ME6128	MECHATRONICS	3-0-0:3	2015	
Course Prerequisites				
Basic knowledge in Mechatronics at UG level				
Course Objectives				
To be capable of modeling, simulating and analyzing mechatronic systems				
Syllabus				
Key elements of a mechatronics system; Actuators and sensors; Signals systems and controllers;				
Digital controllers; Condition monitoring mechatronics; Micro sensors in mehchatronics				

Expected Outcomes

On successful completion of the course, the students will be able to

- Have good understanding of the fundamentals of mechatronics systems
- Use actuators, sensors and controllers effectively
- Apply advanced mechatronics tools in modern manufacturing systems

References

- 1. Bolton W Mechatronics Pearson Education Asia.
- 2. Devadas Shetty Richard A Kolk Mechatronics System Design Thomson Learning.
- 3. Dan Necsulescu Mechatronics Parson Education Asia.
- 4. HMT Ltd Mechatronics TMH

Course Plan

Course I lan				
Module	Content	Hours	Semester Exam Marks (%)	
I mecha mecha	uction to mechatronics system, key elements, tronics design process, types of design, traditional and tronics designs, advanced approaches in mechatronics, me interfacing.	6	15	
II force sensor	tors, sensors and transducers, fluid power and electrical ors, piezoelectric actuators, sensors for position, motion, and temperature, flow sensors, range sensors, ultrasonic rs, fibre optic sensors, magnetostrictive transducer, ton of sensors.	8	15	
	First Internal Examination			
and c	s system and controllers, introduction to signals, system ontrols system representation, linearization, time delays, res of system performance, closed loop controllers, PID llers.	8	15	
IV introd progra	l controllers, controller tuning, adaptive control, uction to microprocessors, micro-controllers and ummable logic controllers, components, PLC umming, elements of data acquisition system.	6	15	
Second Internal Examination				
V monit	nced applications in mechatronics, sensors for condition oring, mechatronics control in automated manufacturing, ial intelligence in mechatronics	10	20	
V V	logic application in mechatronics, microsensors in tronics, case studies of mechatronics systems.	10	20	
Cluster Level End Semester Examination				

Course	e No.	Course Name	-T-P: redits	Year of Introduction			
10ME	6132	FINITE ELEMENT METHODS AND APPLICATIONS 3-	0-0:3	2015			
Course P	-	sites in Mechanics of Solids and Fluids and Thermal Engineeri	ng at UG 1	ovol			
Course C							
		using FEM tool to formulate, simulate and analyze industr	ial probler	ns			
Syllabus			•				
		ement analysis; Scalar and vector field problems; Elasticit					
	-	nt problems; Formulation of computer codes for FEM ana	lysis; Pre-j	processing			
solution of		*					
Expected							
		npletion of the course, the students will be able to	,				
	-	d foundation in the fundamentals of finite element methods element methods in the solutions of problems on theory of					
		computer codes for finite element analysis	clasticity				
		nercially available finite-element based software packages	in real lif	e problems			
Referenc		neretarry available time-element based software packages	III ICal III				
		An introduction to the infinite element method – McGrav	v Hill bool	k company			
		z C. The finite element method - McGraw Hill Book comp					
		K.H. The finite element method of engineers – John Wil					
2. Se	egerlind	L.J. Applied finite element analysis – John Willy & Son	s New Yor	rk 🛛			
		Course Plan					
				Semester			
Module		Content	Hours	Exam			
Module							
Module		ction basic concepts, steps involved in finite element		Exam			
Module	analysi	action basic concepts, steps involved in finite element s, variational methods of approximation, galerkin's	6	Exam			
	analysi methoo	iction basic concepts, steps involved in finite element s, variational methods of approximation, galerkin's l, shape functions, family of elements, assembly and	6	Exam Marks (%)			
	analysi methoo solutio	action basic concepts, steps involved in finite element s, variational methods of approximation, galerkin's l, shape functions, family of elements, assembly and n techniques, one dimensional problems.	6	Exam Marks (%)			
I	analysi methoc solutio Analys	action basic concepts, steps involved in finite element s, variational methods of approximation, galerkin's l, shape functions, family of elements, assembly and n techniques, one dimensional problems. is of scalar field problems and vector field problems,	6	Exam Marks (%) 15			
	analysi method solutio Analys finite	iction basic concepts, steps involved in finite element s, variational methods of approximation, galerkin's l, shape functions, family of elements, assembly and <u>n techniques</u> , one dimensional problems. is of scalar field problems and vector field problems, element analysis of fluid mechanics and heat transfer	6	Exam Marks (%)			
I	analysi method solutio Analys finite	action basic concepts, steps involved in finite element s, variational methods of approximation, galerkin's l, shape functions, family of elements, assembly and n techniques, one dimensional problems. is of scalar field problems and vector field problems,	6	Exam Marks (%) 15			
I	analysi methoc solutio Analys finite problem Elastic	action basic concepts, steps involved in finite element s, variational methods of approximation, galerkin's l, shape functions, family of elements, assembly and n techniques, one dimensional problems. is of scalar field problems and vector field problems, element analysis of fluid mechanics and heat transfer ns, heat conduction energy and navier stokes equations. First Internal Examination ity problems, two and three dimensional elasticity	6 8	Exam Marks (%) 15			
I	analysi method solutio Analys finite problem Elastic problem	action basic concepts, steps involved in finite element s, variational methods of approximation, galerkin's l, shape functions, family of elements, assembly and <u>n techniques</u> , one dimensional problems. is of scalar field problems and vector field problems, element analysis of fluid mechanics and heat transfer ns, heat conduction energy and navier stokes equations. First Internal Examination ity problems, two and three dimensional elasticity ns, bending of beams, the euler-bernoulli beam element,	6 8 8	Exam Marks (%) 15 15			
I	analysi method solutio Analys finite problem Elastic problem plane s	action basic concepts, steps involved in finite element s, variational methods of approximation, galerkin's l, shape functions, family of elements, assembly and <u>n techniques</u> , one dimensional problems. is of scalar field problems and vector field problems, element analysis of fluid mechanics and heat transfer ns, heat conduction energy and navier stokes equations. <u>First Internal Examination</u> ity problems, two and three dimensional elasticity ns, bending of beams, the euler-bernoulli beam element, tress and euler bernoulli element, bending of elastic plate,	6 8 8	Exam Marks (%) 15			
I	analysi methoc solutio Analys finite problem Elastic problem plane s classic	action basic concepts, steps involved in finite element s, variational methods of approximation, galerkin's l, shape functions, family of elements, assembly and <u>n techniques</u> , one dimensional problems. is of scalar field problems and vector field problems, element analysis of fluid mechanics and heat transfer ns, heat conduction energy and navier stokes equations. <u>First Internal Examination</u> ity problems, two and three dimensional elasticity ns, bending of beams, the euler-bernoulli beam element, tress and euler bernoulli element, bending of elastic plate, al plate model, shear deformable plate model.	6 8 8	Exam Marks (%) 15 15			
I	analysi method solutio Analys finite problem plane s classica Eigen	action basic concepts, steps involved in finite element s, variational methods of approximation, galerkin's l, shape functions, family of elements, assembly and <u>n techniques</u> , one dimensional problems. is of scalar field problems and vector field problems, element analysis of fluid mechanics and heat transfer ns, heat conduction energy and navier stokes equations. First Internal Examination ity problems, two and three dimensional elasticity ns, bending of beams, the euler-bernoulli beam element, tress and euler bernoulli element, bending of elastic plate, al plate model, shear deformable plate model. value and time dependent problems, formulation of eigen	6 8 8	Exam Marks (%) 15 15			
I II III	analysi method solutio Analys finite probler plane s classica Eigen value	action basic concepts, steps involved in finite element s, variational methods of approximation, galerkin's l, shape functions, family of elements, assembly and <u>n techniques</u> , one dimensional problems. is of scalar field problems and vector field problems, element analysis of fluid mechanics and heat transfer ns, heat conduction energy and navier stokes equations. <u>First Internal Examination</u> ity problems, two and three dimensional elasticity ns, bending of beams, the euler-bernoulli beam element, tress and euler bernoulli element, bending of elastic plate, al plate model, shear deformable plate model. value and time dependent problems, applications, non-	6 8 8	Exam Marks (%) 15 15 15			
I	analysi method solutio Analys finite problem plane s classic Eigen value linear	action basic concepts, steps involved in finite element s, variational methods of approximation, galerkin's l, shape functions, family of elements, assembly and <u>n techniques</u> , one dimensional problems. is of scalar field problems and vector field problems, element analysis of fluid mechanics and heat transfer ns, heat conduction energy and navier stokes equations. First Internal Examination ity problems, two and three dimensional elasticity ns, bending of beams, the euler-bernoulli beam element, tress and euler bernoulli element, bending of elastic plate, al plate model, shear deformable plate model. value and time dependent problems, formulation of eigen	6 8 8 8	Exam Marks (%) 15 15			

Second Internal Examination			
V	Formulation of computer codes for FEM analysis, philosophy of codes, stages, codes for 1D and 2D problems, program input, FEM analysis packages, features of the commercial software packages, graphical user interface, steps in FEA.	10	20
VI	Pre-processing solution, solution of FE equations, direct solvers, iterative solvers, post-processing, types of data available for post processing, reviewing results, general analysis procedure	10	20
Cluster Level End Semester Examination			

Course No.	Course Name	L-T-P: Credits	Year of Introduction	
10ME6134	METROLOGY AND COMPUTER AIDED INSPECTION	3-0-0:3	2015	
Course Prerequ				
	e of metrology at the UG level			
Metrology and in	students to understand the various techniques and aspection in Engineering Scenarios.	devices relate	d to advanced	
	echniques- Laser Applications in Metrology-Special M M-sensor in inspection- Applications	leasuring Instru	ments and	
Expected Outco				
On completion of	f the course, students will be able to			
• Gain good u	inderstanding of standards and techniques in metrology			
Apply Lase	for measurement			
• Use special	measurement equipments using both contact and nonco	ontact methods		
_	rdinate measuring machine effectively			
1	ferent types of sensors for inspection and control in ma	inufacturing		
References		C		
1. Busch T and	Harlow R, Fundamentals of dimensional Metrology, De	lmar.		
2. Thomas G.G.	Engineering Metrology, ButterWorth.			
3. Sabne Soloma	n, Sensors and Control systems in Manufacturing, McC	Fraw Hill Book		
4. Doeblin Meas	urement systems: Applications & Design, Doebelin Inte	ernational Stude	ent Edition	
5. Robert G. Sei	5. Robert G. Seippel, Optoelectronics for Technology and Engineering, Prentice Hall India			
Course plan				
Module	Content	Hours	Semester Exam Marks (%)	
	logy and Techniques:Standards in metrology-definability, Characteristics Length & Angular measurer		15	

1			
	Review of standard instruments, GD and tolerance procedure-		
	Review of dimension & form tolerance and methods of		
	measurement, Tolerance analysis, Surface metrology-Instruments,		
	Methods and new approaches.		
	Laser Applications in Metrology:LASER light source, LASER		
	interferometer, LASER alignment telescope, LASER micrometer,	8	
II	On-line and in-process measurements of diameter, Roundness and	Ū	15
	surface roughness using LASER, Micro holes and topography		
	measurements, straightness and flatness measurement		
	First Internal Examination		
	Special Measuring Instruments and Techniques: Optoelectronic		
	devices, contact and noncontact types, Applications in on-line and		
	in-process monitoring systems, Tool wear measurement, Surface		15
Ш	measurement, Machine vision, shape identification, Edge	8	15
	detection techniques, Normalisation, gray scale correlation,		
	Template Techniques, Surface roughness using vision system,		
	Interfacing robot and image processing system.		
	Co-ordinate Measuring Machine: Types of CMM, Probes used,		
	Applications, Non-contact CMM using electro optical sensors for		
IV	dimensional metrology, Non-contact sensors for surface finish	8	15
	measurements, statistical evaluation of data using computer, Data		
	integration of CMM and data logging in computers.		
	Second Internal Examination		
	Sensors in Inspection: Manufacturing applications of photo	_	
V	detectors, deflection methods-beam detection, Reflex detection, &	8	20
	Proximity detection,		
	Applications of Inductive and Capacitive proximity sensors,		
	Understanding microwave sensing applications laser sensors and		
VI	limit switches. Advanced sensor technology-Bar code systems,	8	20
	Principles and applications of Colour sensors, electro-magnetic		
	identifier, Tactile sensors, Ultrasonic sensors, Odour sensors.		
Cluster Level End Semester Examination			

Course No.	Course Name	L - T - P - Credits	Year of Introduction	
10ME6108	MINI PROJECT	0-0-2-2	2015	
Course Prerequisites (1) The habit of reading technical magazines, conference proceedings and journals; (2) Skills in hardware/software implementation techniques earned through UG studies. (3) Seminar I 				
Course Objectives				

(1) To support the problem based learning approach and to enhance the reading habit among students;

(2) To enhance the skills regarding the implementation aspects of small hardware/software projects.

Guidelines

Each student has to do a mini project related to the branch of specialization under the guidance of a faculty member. It has to be approved by a committee constituted by the institute concerned. It is recommended that the same faculty member may serve as his/her Project Supervisor during 3rd& 4th semesters. The mini project is conceptualized in such a way that, some the outcomes of the work can be utilized in the selection of the thesis. Hence on completion of mini project the student can suggest possible list of their thesis topic in the second semester itself. The implementation of the mini project can be software and/or hardware based one. Mini project is envisaged as a way for implementing *problem based learning*. Problems of socially relevance and/or problems identified by the institute/ research organizations/ industry/ state should be given high priority. In such interdisciplinary and inter institutional projects, a student can have coguide(s) from other department/ institute/ research organizations/ industry. The university encourages *interdisciplinary projects* and *problem based learning strategy*. References cited shall be authentic.

Expected Outcomes

The students are expected to :

(1) Develop skills regarding enumerating and selecting problems, subsequent analysis, and effective implementation of the solution;

(2) Be motivated and successful in the selection of the topic for the main project.

References

- 1. J.W. Bames, *Statistical Analysis for Engineers and Scientists*, McGraw Hill, New York.
- 2. Schank Fr., *Theories of Engineering Experiments*, Tata McGraw Hill Publication.
- 3. Douglas C Montgomery, Design and analysis of experiments, Wiley International
- 4. Leedy P D, *Practical Research : Planning and Design*, 4th Edition, N W MacMillan Publishing Co

	Course plan				
Item	Description	Time			
1	Abstract Submission	2 Week			
2	Allotment of Topic	1 Week			
3	Preliminary Presentation Sessions	1 Week			
4	Implementation Phase	9 Weeks			
5	Final Presentation-cum Demonstration	1 Week			

Course No.	Course Name	L-T-P: Credits	Year of Introduction
10ME6112	ADVANCED MANUFACTURING LAB	0-0-2:1	2015
Course Prerequ			
Basic knowled desirable	ge of CAD/CAM software and concepts of Modern Ma	nufacturing M	ethods is
Course Objecti	Ves		
U	ry shall primarily address the practical aspects of	the key area	s of advanced
	. The list of experiments shall include the latest manu	•	
	ce on CNC machines, Robots, FMS, PLC etc		5
Expected Outco			
-	g the laboratory, the students will be able to operate and	work on adva	nced machiner
	to plan and design programs for different applications in		•
List of Experin			U
1. Exercise	s on Manual CNC Part programming using G& M codes	3.	
	ng of parts on CNC Machines including preparation of	part program,	after simulation
	ath using suitable CAM software package.		
•	gramming using CAM software like MASTERCAM		
	programming.		
	ents on micro-machining		
	d experimentation with CMM		1 1:0
	ental investigation of machining parameters like cutt	ing force, too	l wear, life et
•	trumentation like Lathe/Mill tool dynamometers.		
1	ents on CAI and Quality control ents with NDT techniques		
1	d experimentation with intelligent control systems		
•	ents with non conventional machining processes.		
12. Experim			
1	ents with PLC automation		
	ool Makers Microscope and experiments on TMM		
	urface roughness meter and related experiments		
	periments on 3D printer		
	D scanner and experiments		
	perimentation by students with latest research & de	velopments ir	n the advance
manufac	· · · · · · · · · · · · · · · · · · ·		

SEMESTER III

Course No.	Course Name	L-T-P: Credits	Year of Introduction		
10ME7105	INDUSTRIAL TRIBOLOGY	3-0-0:3	2015		
Course Prere Basic knowled	quisites ge of engineering mechanics and mathematics at UG leve	1.			
	tives udents capable of developing a thorough knowledge on surface rious components and to lay a sound foundation on lubric		,		
theory of dry s instability, Fri wear, Miscell miscellaneous Mineral Oil, O Hydrodynamic lubrication, So Expected Out On completion • Have a • Be thom • Apply	 Syllabus Scope of tribology, Contact of solids, Surface topology, Surface interaction. Friction laws, Modern theory of dry solid friction, Temperature of sliding surface, Mechanism of rolling friction, Friction instability, Friction of elastomers. Theories of adhesives, Abrasives, Surface fatigue and corrosive wear, Miscellaneous wear theory such as Erosive, cavitation and Fretting wear, Wear of miscellaneous machine components such as gears, Plane bearings and rolling elements. Lubricant, Mineral Oil, Grease, Solid lubricant, Lubrication regime, Reynolds equation and its limitations. Hydrodynamic lubrication, Hydrostatic lubrication, Elasto-hydrodynamic lubrication, Boundary lubrication, Squeeze films. Application of tribology in manufacturing processes. Expected Outcomes On completion of the course, students are expected to Have a good understanding of the surface topology, surface interaction and friction 				
	<i>Principles and Applications of Tribology</i> , Pergamon Prengupta, <i>Fundamentals of Tribology</i>	SS			
	Course Plan				
Module	Content	Hours	Semester Exam Marks (%)		
Ι	Definition and Scope of tribology, Contact of soli Surface topology, Surface interaction.	0	15		
II Friction: Definitions, Types, Friction laws, Modern theory of dry solid friction, Temperature of sliding surface, Mechanism of rolling friction, Friction instability, Friction of elastomers.					
	First Internal Examination				
III	Wear: Definition, Classification, Theories of adhesiv Abrasives, Surface fatigue and corrosive we Miscellaneous wear theory such as Erosive, cavitation a Fretting wear, Wear of miscellaneous machine compone	ar, 10 nd	15		

	such as gears, Plane bearings and rolling elements.				
IV	Lubrication of bearing, Lubricant, Mineral Oil, Grease, Solid lubricant, Lubrication regime, Viscous flow, Reynolds equation and its limitations.	6	15		
	Second Internal Examination				
V	Hydrodynamic lubrication, Hydrostatic lubrication, Elasto- hydrodynamic lubrication, Boundary lubrication, Squeeze films	6	20		
VI	Application of tribology in manufacturing processes, Metal machining, Metal cutting, Tool wear, Action of lubricants, Friction welding, Extrusion process		20		
	Cluster Level End Semester Examination				

Course No.	Course Name	L-T-P: Credits	Year of Introduction		
10ME7107	CONCURRENT ENGINEERING AND PRODUCT LIFE CYCLE MANAGEMENT	3-0-0:3	2015		
Course Prerequi					
	ing of mechanical and industrial engineering at the UC	G level.			
Course Objectiv					
-	nd product design and concurrent engineering and pro-	duct life cycle			
Syllabus					
	tensive definition of Concurrent Engineering (CE).Us				
	upport, Solid modelling, Product data management. D				
	s. Need for PLM: Importance of PLM, Implementing	· •	•		
	ts of PLM: Product lifecycle activities, Product organ	nizational struc	cture.		
Expected Outco					
	npletion of the course, the students should be able to				
	l understanding of the concurrent engineering principl	es and design	methodologies		
	e collaborative product development				
	nation technology for modeling and product data man				
Use produ problems.	act life cycle management tools and techniques for sol	ving product l	ife cycle		
References					
1. M.M. Ander	son and L Hein, Integrated Product Development, IFS	S Publications			
2. J. Cleetus, D	esign for Concurrent Engineering, CE Research Cen	tre, Morgantov	wn		
3. Prasad, Concurrent Engineering Fundamentals: Integrated Product Development, Prentice hall India					
	4. I. Moustapha, <i>Concurrent Engineering in Product Design and Development</i> , New Age International				
	5. John Stark, Product Life cycle Management Springer-Verlag, UK				
-					

7. And	7. Andrew Kusiak, Concurrent Engineering: Automation tools and Technology, Wiley Eastern			
	Course Plan			
Module	Content	Hours	Semester Exam Marks (%)	
Ι	Introduction: Extensive definition of Concurrent Engineering (CE), CE design methodologies, Review of CE techniques like DFM (Design for manufacture), DFA (Design for assembly)	6	15	
II	QFD (Quality function deployment), RP (Rapid Prototyping), TD (Total design), for integrating these technologies, Organizing for CE, CE tool box, Collaborative product development.	6	15	
	First Internal Examination			
III	Use of Information Technology: IT support, Solid modeling, Product data management, Collaborative product commerce, Artificial Intelligence, expert systems, Software hardware component design.	10	15	
IV	Design Stage: Lifecycle design of products, Opportunities for manufacturing enterprises, Modality of concurrent engineering design, Automated analysis Idealization control, CE in optimal structural design, Real time constraints.	8	15	
	Second Internal Examination			
V	Need for PLM: Importance of PLM, Implementing PLM, Responsibility for PLM, Benefits to different managers, Components of PLM, Emergence of PLM, Lifecycle problems to resolve, Opportunities to seize.	8	20	
VI	Components of PLM: Components of PLM, Product lifecycle activities, Product organizational structure, Human resources in product lifecycle, Methods, techniques, Practices, Methodologies, Processes, System components in lifecycle, slicing and dicing the systems, Interfaces, Information, Standards.	10	20	
	Cluster Level End Semester Examination			

Course No.	Course Name	L-T-P: Credits	Year of Introduction			
10ME7209	SENSORS AND CONTROLS IN MANUFACTURING	3-0-0 : 3	2015			
Course Prerequi						
Basic knowledge	in Optics, Electronics, CAD/CAM/CAE at UG level					
Course Objectives						
To enable the use of sensors and control systems to monitor and control manufacturing						
Syllabus						

. Classification and types of sensors, classification of control processes, fiber optics in sensors and control system, networking of sensors and control systems in manufacturing, Role of sensors and control technology in CIM, Advanced sensor technology in precision manufacturing applications, Industrial sensors and control, sensor materials, Process control sensors sensor network architecture in manufacturing, Sensors in flexible manufacturing systems, industrial robotics, collection and generation of process signals in manufacturing systems.

References

- 1. Sabrie Solomon, Sensors and Control Systems in Manufactring, McGraw Hill, New Delhi.
- 2. Sabrie Solomon, Sensors Handbook. McGraw Hill, New Delhi
- 3. S.C., Gupta, Optoelectronic Devices and Systems, PHI Learning Pvt. Ltd
- 4. Sanjay B. Joshi and Jeffrey S. Smith (Ed), *Computer Control of Flexible Manufacturing Systems: Research and Development*, Springer-Science+Business Media, B.V.

Expected Outcomes

After completion of the course the student should be able to:

- Independently carry out a comprehensive study of the manufacturing system for implementation of sensors and control system.
- Conceive, design, install and operate a manufacturing system integrated with sensors and control system.
- Demonstrate and project the use of sensors and control system in manufacturing.

Course Plan			
Module	Content	Hours	Semester Exam Marks (%)
I	Classification and types of sensors, classification of control processes, photoelectric sensors, proximity sensors, limit switches, microwave sensors, confocal microscopy sensors, laser sensors, fiber optics in sensors and control system, principles of fiber optics in data communication, configuration of fiber optics for sensors, testing of fiber optics,	6	15
П	networking with electro-optic links, high-clad fiber-optic cables, networking of sensors and control systems in manufacturing, mean time of intervention, yield, mean processing time etc., sensor networks detecting machinery faults, layers of communication, networks in manufacturing, RS-232, Ethernet, TCP/IP, MAP, AbNET, universal memory network, satellite sensor network	6	15
	First Internal Examination		
ш	Role of sensors and control technology in CIM, CIM plan in manufacturing, engineering and research, production planning, physical distribution, business management, enterprise etc., the manufacturing enterprise model, design of CIM with sensors and control systems, decision support system with sensors and control systems, CIM data base, multi-objective support decision system, analysis and design of CIM with sensors and control system, SADT, data acquisition for sensors and control systems	6	15

	in CIM environments, CIM strategy.		
IV	Advanced sensor technology in precision manufacturing applications, OCR, bar code, electromagnetic identification, surface acoustic waves, position encoder, fuzzy logic for optoelectronic colour sensors, available light sensing techniques, phtotodiodes, phototransistors and photo darlingtons, photoconductive sensors, sensor electronic assemblies, selection of a sensor, hybrids of photomulitiplier options, fault detecting sensors in dynamic machine parts, vibration measurement, optoelectronic feedback signals for servomotors, acousto-optic sensors, optoelectronic/vision associate memory, sensors for hand-eye coordination of microbotic motion, force and optical sensors for robot grippers, ultrasonic stress sensor, predictive monitoring sensors, reflective strip imaging camera sensor, sensors for biomedical technology	10	15
	Second Internal Examination		
V	Industrial sensors and control, sensors in manufacturing, temperature and pressure sensors, fiber-optic pressure sensor, nano-positioning capacitive metrology sensors, electrode geometry, sensor for surface flatness and finish, special design to eliminate cable influences, sensor materials, mounting, calibration and measuring ranges, electronics support, sensor installation, integrated linearization system, robotic displacement sensors, Process control sensors for flow, gas spectroscopy, avalanche photo diode, APD, dark current and noise current, crack detection sensors, laser doppler velocity sensor, ultrasonic/laser non destructive evaluation sensor, process control sensors for acceleration, sensor network architecture in manufacturing,	10	20
VI	Sensors in flexible manufacturing systems, robot control through vision sensors, end effctor camera sensor for edge detection and extraction, ultrasonic end effector, end effector sound-vision recognition, end effector LVDT sensor, Robot control through sensors, multisensory controlled robot assembly, industrial robotics, robot programming, introduction to data communication, sensors for input control, microcomputer interactive development system, NC controller, industrial handling and packaging, linear and synchronous indexing, parallel and serial data transmission, collection and generation of process signals in manufacturing systems.	10	20
	Cluster Level End Semester Examination		

10ME'		Course Name C	-T-P: redits	Year of Introduction			
	7211	PROCESS PLANNING AND COST ESTIMATION 3-	0-0:3	2015			
	Course Prerequisites Basic knowledge in Industrial Engineering at UG level						
Course C	Objective	es					
		carrying out process planning and cost estimation effective	ly				
Syllabus . Work st cost and c	udy and	ergonomics, process planning, cost estimation, production	cost estin	nation, labour			
Referenc		5					
2. Pl 3. Ri 4. Cl	hilips F. ussel R.S hitale A.	P., Mechanical Estimation and Costing, Tata McGraw-Hill Ostwal and Jairo Munez, Manufacturing Processes and Sy S. and Tailor B.W., Operations Management, PHI V. and Gupta R.C., Producti Design and Manufacturing,		nn Wiley			
Expected							
	-	of the course the student should be able to nthe correct out process planning and cost estimation in a m	nufacturi	na			
	idepende	ntly carry out process planning and cost estimation in a m		ng			
		nulate, analyze and optimize the system.					
	,	Course Plan					
				Semester			
Module		Content	Hours	Exam Marks (%)			
I	definition techniq procedu	ction to work study and ergonomics, method study, on, objectives, motion economy, principles, tools and ues, applications, work measurements, purpose, use, are tools and techniques, standard time, ergonomics, les, applications		15			
П	Introdu approac finishec selectio	ction to process planning, definition, Objective, scope ches to process planning, Process planning activities d part requirements, operating sequences, machin on, material selection parameters, set of documents for planning,	e 8	15			
		First Internal Examination	-				
Ш	time Introdu	ping manufacturing logic and knowledge, production calculation, selection of cost, optimal processes; ction to cost estimation, objective of cost estimation, , cost accounting	6	15			
IV	Classifi method	ication of cost, elements of cost, types of estimates, s of estimates, data requirements and sources, collection allowance in estimation. Second Internal Examination		15			

V	Introduction to production cost estimation, estimation of material cost, case studies	10	20	
VI	Labour cost and over heads, allocation of overheads, estimation for different types of jobs, case studies	10	20	
	Cluster Level End Semester Examination			

Course No.	Course Name	L-T-P: Credits	Year of Introduction				
10ME7113	ENERGY MANAGEMENT	3-0-0:3	2015				
Course Prerequisites Fundamental ideas of motors, pumps, fans and boilers at UG level.							
Course Objectiv	importance of energy consciousness while dealing v	with various a	norgy involved				
	prate the energy systems in the most judicious manner		nergy mvolved				
Syllabus	rate the chergy systems in the most judicious manner	•					
·	ent concepts, Energy efficient operation of pumps, fa	ns motors air	compressors				
	systems, boilers, water heaters - steam distribution -De		-				
	ion in Lighting Schemes, Cogeneration.	emana siae me	inagement,,				
Expected Outco							
-	f the course, the students are expected to						
-	orough understanding of the processes for efficient er	ergy managen	nent.				
	y design and use equipments such as pumps, fans, mo						
	n energy saving						
	y saving mechanics in lighting and heating application	ns					
	ently conduct energy audit and give practical suggesti		conservation				
References							
	and Shashank Jain, <i>Handbook on Energy Audit and</i> . 06	Environment N	lanagement,				
2. Sunil S.R publisher	ao, Utilization, Generation & Conservation of Electri 5, 2007.	cal Energy, K	hanna				
3. Anthony Pub; (199	J.Pansini, Kenneth D. Smalling, <i>Guide to Electric Loc</i> 8)	ad Managemer	at, Pennwell				
, (, Art and Science of Utilisation of Electrical Energy, 1	DhanpatRai an	d Sons, New				
	S.C., Electric Energy Utilization And Conservation, T	ata McGraw H	Hill, 1991				
6. Witte, L.	 Witte, L.C, Schmidt, P.S., Brown, D.R, <i>Industrial Energy Management and Utilisation</i>, Hemisphere Publ, Washington, 1988. 						
1	Energy Conservation Manuals, MIT Press, Mass, 19	82.					
8. Guide Bo	8. <i>Guide Book for National Certification Examination for Energy Managers & Energy</i> <i>Auditors</i> – Bureau of Energy Efficiency, Ministry of Power, Govt of India.						
Course plan							

Module	Content	Hours	Semester Exam Marks (%)		
I	Importance of energy management. Energy auditing: methodology System approach and End use approach to efficient use of Electricity; Electricity tariff types. Audit instruments- consumption models-Case study. Demand side management.	8	15		
п	Electric motors-Energy efficient controls and starting -Motor Efficiency and Load Analysis- Energy efficient motors-Case study; Load Matching and selection of motors. Variable speed drives; Pumps and Fans-Efficient Control strategies- Optimal selection and sizing -Case study Reactive Power management-Capacitor Sizing-	8	15		
	First Internal Examination				
ш	Peak Demand controls- Methodologies-Types of Industrial loads-Optimal Load scheduling-case study Lighting- Energy efficient light sources-Energy conservation in Lighting Schemes- Electronic ballast-Power quality issues-Luminaries, case study.	8	15		
IV	Energy conservation in Pumps , Fans (flow control), Compressed Air Systems, Refrigeration & air conditioning systems	8	15		
	Second Internal Examination				
V	Boiler -efficiency testing, excess air control, Steam distribution & use- steam traps, condensate recovery, flash steam utilization	8	20		
VI	Cogeneration-Types and Schemes-Optimal operation of cogeneration plants-case study. Electric water heating-Gysers-Solar Water Heaters	8	20		
	Cluster Level End Semester Examination				

Course No.	Course Name	L-T-P: Credits	Year of Introduction			
10ME7215	EXPERT SYSTEM AND ARTIFICIAL INTELLIGENCE IN MANUFACTURING	3-0-0:3	2015			
Course Prerequi						
Basic knowledge	in CAD/CAM/CAE at UG level					
Course Objectiv	es					
To enable the stu	dents to integrate Artificial Intelligence and Expert sy	ystem into mar	nufacturing			
Syllabus						
Artificial intelligence; Knowledge sources; Expert system languages; Robotics; Database management systems; Process control and office automation						

• U	complet tilize exp	mes ion of the course the student should be able to: pert system and AI in manufacturing system analysis hercial software packages for manufacturing system analysis	ysis.		
Ма	nili, Da Inufactu	una S. Nau and Steven H. Kim (Ed) Artificial Inter ring, AAAI Press. chalkoff, Artificial Intelligence: An Engineering Approace	0		
		Course Plan			
Module		Content	Hours	Semester Exam Marks (%)	
Ι	areas,	al intelligence, definition, components, scope, applicatio knowledge-based systems (expert systems), definition ation, structure, characterization		15	
II	represe	edge sources, expert knowledge acquisition, knowledge entation, knowledge base, interference strategies, forwar ckward chaining		15	
		First Internal Examination		•	
Ш	examp	system languages, ES building tools or shells, typicalles of shells, expert system software for manufacturin tions in CAD, CAPP, MRP, adaptive control.		15	
IV	Robotics, process control, fault diagnosis, failure analysis, process selection, GT etc.,		⁸ , 6	15	
		Second Internal Examination			
V	MDB,	g expert systems to other software such as DBMS, MIS case studies.	0	20	
VI	Process control and office automation, case studies of typical applications in tool selection, process selection, part classification, inventory control, process planning etc.			20	
		Cluster Level End Semester Examination			
Course	e No.	Course Name	L-T-P: Credits	Year of Introduction	
10ME7117		MACHINE TOOL DESIGN	3-0-0:3	2015	
Prerequi Pagia ida		sign of machine elements at UG level.			

Basic ideas of design of machine elements at UG level.

Objectives

To impart the capability to design different types of machine tools by understanding the functional and operational requirements.

Syllabus

Machine tool drives, Regulation of speed and feed rates, Design of machine tool structure, Design of guide-ways and power screws, Design of spindles and spindle supports, Dynamics of machine tools.

Expected Outcomes

The students will be able to :

- 1. develop and evaluate cutting tools and work holders for product
- 2. develop the conceptual design, manufacturing framework and systematic analysis of design problems of the machine tools

References

- 1. Mehta N.K., Machine Tool Design, Tata McGraw Hill
- 2. Machine Tool design Handbook CMTI Bangalore

Course plan					
Module	Content	Hours	Semester Exam Marks (%)		
I	Machine Tool Drive: working and auxiliary motion in machine, Machine tool drives, Hydraulic transmission, Mechanical transmission, General requirements of machine tool design, Layout of machine tools.	10	15		
П	Regulation of Speed and Feed Rates: Aim of speed feed regulation, stepped regulation of speed, design of speed box, Design of feed box, Special cases of gear box design, Set stopped regulation of speed and feed rates.	8	15		
	First Internal Examination				
ш	Design of Machine Tool Structure: Fundamentals of machine tool structures and their requirements, Design criteria of machine tool structure, Static and dynamic stiffness, Design of beds and columns, Design of housing models, Techniques in design of machine tool structure.	10	15		
IV	Design of Guide-ways and power Screws: Function and type of guide-ways, design of slide-ways, Protecting devices for slide-ways, Design of power screws.	6	15		
	Second Internal Examination				
V	Design of Spindles and Spindle Supports: Materials for spindles, Design of spindles, Antifriction bearings, Sliding bearings.	8	20		
VI	Dynamics of Machines Tools: General procedure of assessing dynamic stability of EES, Cutting processing, Closed loop system, Dynamic characteristic	6	20		
	Cluster Level End Semester Examination				

Course	No.	Course Name	L-T-P: Credits	Year of Introduction		
10ME7	7119	MATERIAL SELECTION IN MECHANICAL DESIGN 3	-0-0:3	2015		
Course P Basic und	-	sites ing of material selection and mechanical design processes	at UG leve	el.		
designing cost, man design pro Syllabus	ary obje a mec ufactura ocess.	ective is to help the students understand how to effective hanical component satisfying all the design constraints ability. It also details the use of the various codes and stan	like availa dards for t	ability, safety, he mechanical		
of engined properties	ering mass and sha	f engineering materials-Materials and the design process-I aterials-Material selection based on properties alone-Mate ape-Processing-Materials and design-Materials property d erials-New materials-Case studies.	rial selection	on based on		
 Un See Us Ap Reference 5. Cha Eng 6. Ash 7. Ash Prace 	 On successful completion of the course, the students will be able to Understand the properties of various materials for design Select the appropriate material for a particular design application Use smart materials and composites for modern applications Apply the knowledge acquired for designing of complex mechanical systems. References Charles, J. A., Crane, F. A. A., and Furness, J. A. G., Selection and Use of EngineeringMaterials, Butterworth-Heinemann, Oxford. Ashby, M. F., Materials Selection in Mechanical Design,Butterworth-Heinemann, Oxford. Ashby, M. F., The Engineers Guide to Materials Selection - Modern Methods and Best Practices, AEA Technology. 					
0. 114	<u>er mann</u>	, N. A., and Ashby, M. F., (eds), Materials Selection, Cha Course Plan	pinuini un	<i>a</i> 11 <i>a</i> 11, 1990		
Module		Content	Hours	Semester Exam Marks (%)		
Ι		e design process, families of engineering materials.	8	15		
II	definiti	onal requirements of engineering materials, The ions of material properties, Material selection based or ties alone.		15		
Т		First Internal Examination				
III	Proper	al selection based on properties and shape, Processing ty changes based on processing.	8	15		
IV		als and design, Materials property data, Exploring al properties, The material property charts.	8 8	15		
		Second Internal Examination				

V	Latest developments in the use of materials, New materials like smart materials, composites and materials used for defence and space applications.	8	20
VI	Case studies, Simple case of a shaft material to complex materials like those used in space applications.	8	20
Cluster Level End Semester Examination			

Course No.	Course Name	L - T - P - Credits	Year of Introduction			
10ME7101	SEMINAR II	0 - 0 - 2	2015			
 The hat Knowled knowled level and The conditional strength To enhadre the strength To enhadre the strength To develope the strength To estate discovere To arrive 	 To develop skills regarding professional communication and technical report writing. To establish the fact that student is not a mere recipient of ideas, but a participant in discovery and inquiry. To arrive at a conclusion for doing Project Phase 1; 					
may report the the topic for the beginning of the towards the mission semest seminar-2 shall. The committee coverage of the Moreover, eac Institution. It is which is suitable learn how to put	Guidelines Students have to present a second seminar in 3rd semester. It is highly recommended that seminar-2 may report the literature survey being conducted as a requirement for doing the main project. Since the topic for the main project topic is to be finalized at the end of the second semester/ in the beginning of the 3 rd semester, one can perform the literature search and present it as a seminar towards the middle of the semester. The Progress Evaluation Committee (PEC) formed in the second semester itself, may be the panel of evaluators for Seminar-2 also. The presentation of seminar-2 shall be of 20 minutes duration with another 5 minutes allocated for a discussion session. The committee shall evaluate the seminar based on the style of presentation, technical context, coverage of the topic, adequacy of references, depth of knowledge and the overall quality. Moreover, each student has to submit a seminar report in the prescribed format given by the Institution. It is recommended that the report for seminar-2 may be in the form of a technical paper which is suitable for publishing in Conferences / Journals as a review paper. This makes a student learn how to publish a paper and consequently develops a publishing culture among the PG student community. The references cited in the report shall be <i>authentic</i> .					

- Be motivated in reading which equip them in identification of thesis area and its literature review;
- Develop the capacity to observe intelligently and propose and defend opinions and ideas with tact and conviction;
- Develop skills regarding professional communication and technical report writing;
- Arrive at a conclusion for doing Project Phase 1;
- Learn the methodology of publishing technical papers.

References

1.M. Ashraf Rizvi, *Effective Technical Communication*, Tata McGraw Hill, New Delhi, 2005 2.Day R A, *How to Write and Publish a Scientific Paper*, Cambridge University Press, 1989 3.Coley S M and Scheinberg C A, *Proposal Writing*, 1990, Newbury Sage Publications.

Course plan				
Item	Description	Time		
1	Abstract Submission 3 Weeks	3 Weeks		
2	Allotment of Topic and Scheduling Seminars	1 Weeks		
3	Literature Review and Presentation Sessions	6 Weeks		
4	Report Submission	3 Weeks		
5	Publishing Grades	1 Weeks		

Course No.	Course Name	L - T - P - Credits	Year of Introduction
10ME7103	PROJECT (PHASEI)	0 - 0 - 12	2015

Course Prerequisites

- (1) The habit of reading technical magazines, conference proceedings and journals;
- (2) Interest solving in socially relevant or research problems
- (3) Skills in hardware/software implementation techniques earned from UG and mini project in semester 1
- (4) Course Mini project, Seminar II &b Research Methodology

Course Objectives

(1). The student is expected to finalise the thesis topic from the areas identified during seminar II.
 Background studies towards the project have to be done through literature survey in relevant fields.
 (2). (S)he will work on the topic, familiarize with the design and analysis tools required for the

project work and plan the experimental platform, if any, required for project work.

(3) To develop the skill of identifying research problems/socially relevant projects

(4) To enhance the skills regarding the implementation aspects of small hardware/software projects. **Guidelines**

Each student has to identify the topic project (phase I) related to the branch of specialization under the guidance of a faculty member. It has to be approved by a committee constituted by the institute concerned. It is recommended that the same faculty member may serve as his/her Project Supervisor during 4th semester also. This project phase is conceptualized in such a way that,

some the outcomes of the work may be continued for thesis work. Hence on completion of thisproject phase, (S)he will make a presentation based on the work and suggest future plan for his thesis work. The implementation of this phase of project can be software and/or hardware based one. This project phase is also envisaged as a way for implementing *problem based learning*. Problems of socially relevance and/or problems identified by the institute/ research organizations/ industry/ state should be given high priority. In such interdisciplinary and inter institutional projects, a student can have co-guide(s) from other department/ institute/ research organizations/ industry. The university encourages *interdisciplinary projects* and *problem based learning strategy*.References cited shall be authentic.The following guidelines also have to be followed.

- 1. The student will submit a detailed project (phase I)report
- 2. The student will present at least two seminars
- 3. The first seminar will highlight the topic, objectives and methodology
- 4. A progress seminar can be conducted in the middle of the semester
- 5. The third seminar will be a presentation of the work they have completed till the end of third semester and the scope of the work which is to be accomplished in the fourth semester, mentioning the expected results

Expected Outcomes

The students are expected to :

- Develop the skill of identifying industrial/ research problems/socially relevant projects
- Develop skills regarding enumerating and selecting problems, subsequent analysis, and effective implementation of the solution.
- Hands on experience in design and analysis tools required for the project work
- Plan the experimental platform, if any, required for project work, which will be helpful in actual real life project planning
- To enhance the skills regarding the implementation aspects of hardware/software projects.
- Acquire documentation and problem solving skills.
- Develop professionalism.
- Communicate technical information by means of written and oral reports.

References

- 1. J.W. Bames, Statistical Analysis for Engineers and Scientists, McGraw Hill, New York.
- 2. Schank Fr., *Theories of Engineering Experiments*, Tata McGraw Hill Publication.
- 3. Douglas C Montgomery, Design and analysis of experiments, Wiley International
- 4. Leedy P D, *Practical Research : Planning and Design*, 4th Edition, N W MacMillan Publishing Co

	Course plan				
Item	Description	Time			
1	Abstract Submission	2 Week			
2	Allotment of Topic	1 Week			
3	Preliminary Presentation Sessions	1 Week			
4	Implementation Phase	9 Weeks			
5	Final Presentation-cum Demonstration	1 Week			

SEMESTER IV

Course No.	Course No.Course NameL - T - P - CreditsYe Intro				
10ME7104	PROJECT (PHASE II)	0 - 0 - 24	2015		
 (2) Interest (3) Skills semess (4) Course (5) Course (5) Course (6) Course (7) Course (7) Course (8) Course (9) Course (9) Course (1) To determine (1) To determine (2) To determine (3) To determine (4) Course (5) Course (6) Course (6) Course (7) Course (7) Course (8) Course (9) Course (9) Course (1) To determine (1) To determine (2) The state (3) The fill (4) A proping (5) The thermosonic course (2) Course (3) The fill (4) A proping (5) The thermosonic course (2) Course (3) The fill (4) A proping (5) The thermosonic course (6) Course (7) Co	bit of reading technical magazines, conference proceed st solving in socially relevant or research problems in hardware/software implementation techniques earned ter 1 e Seminar II&b Research Methodology e PROJECT(Phase I)	I from UG and n based on Project limited time ance of a facul ited by the insti- resentation base ged as a way for or problems ide given high pri- have co-guide The universit ty. References odology lester tion of the work vork also has to efore the Evalua is would be the	t (phase I) t (phase I) ty member, as tute concerned. ed on the work r implementing entified by the ority. In such c(s) from other y encourages cited shall be t they have be ation qualifying		
• Devel	tcomes s are expected to : op the skill of identifying industrial/research problems/second skills regarding enumerating and selecting problem	•			

- Hands on experience in design and analysis tools required for the project work
- Plan the experimental platform, if any, required for project work, which will be helpful in actual real life project planning
- Enhance the skills regarding the implementation aspects of hardware/software projects.
- Acquire documentation and problem solving skills.
- Develop professionalism.
- Communicate technical information by means of written and oral reports.

References

1.J.W. Bames, Statistical Analysis for Engineers and Scientists, McGraw Hill, New York.

2. Schank Fr., Theories of Engineering Experiments, Tata McGraw Hill Publication.

3. Douglas C Montgomery, Design and analysis of experiments, Wiley International

4.Leedy P D, *Practical Research : Planning and Design*, 4th Edition, N W MacMillan Publishing Co

	Course plan				
Item	Description	Time			
(1)	Implementation Phase	10 Weeks			
(2)	Thesis Preparation	3 Weeks			
(3)	Final Internal Presentation-cum Demonstration	1 Week			
(4)	Evaluation by the External expert	4 Weeks			

ASSESSMENT CRITERIA

A. Evaluation of Theory Courses

KTU follows a continuous academic evaluation procedure. This includes two internal examinations and one end semester cluster level University examination. Besides, students should be given proper assignments / course seminars which are essential aspects of a student-centric teaching approach. The continuous assessment procedure and corresponding weights for awarding 100 marks for a theory subject are as follows.

- 1. Two internal tests, each having 15 marks summing to a total of 30 marks
- 2. Tutorials / Assignments / Course Seminars summing to a total of 10 marks, and
- 3. Cluster level end-semester examination having 60 marks

B. Evaluation of Research Methodology

The course Research Methodology should be a common one for all specializations, which is envisaged to provide a research orientation for PG students. The teaching - learning process for this course should be a student-centric one in which the faculty-in-charge would take the role of a facilitator in the system. Students should be given proper guidelines for practicing the various methodologies which aims at the overall improvement of their skills required for pursuing research. The continuous assessment procedure and corresponding weights for awarding 100 marks (fully internal) for Research Methodology are as follows.

- 1. Three internal tests, each having 20 marks summing to a total of 60 marks
- 2. Tutorials / Assignments / Course Seminars summing to a total of 40 marks

C. Evaluation of Practical Courses

The continuous assessment procedure and corresponding weights for awarding 100 marks for a practical subject are as follows.

- 1. Practical Records / Results summing to a total of 40 Marks
- 2. Regular Class Viva-Voce summing to a total of 20 Marks
- 3. Final Test (Internal & Objective Type) having 40 Marks

D. Guidelines for Seminar-1

Students have to select a topic and present a seminar in first semester on any current topic related to the branch of specialization under the guidance of a faculty member. It is recommended that the same faculty member may serve as his/her supervisor for the mini-project in 2^{nd} semester and also for the main project during 3^{rd} 4th semesters. Hence it is also recommended that a topic, possibly relevant to his mini-cum-main project may be selected as the topic for seminar-1, after the consultation with the guide. The student will undertake a detailed study of the subject based on current published papers, journals, and books and present it before a committee with the Head of the Department as the chairman and two faculty members (Faculty advisor + Guide) from the department as members. The presentation shall be of 20 minutes duration with another 5 minutes allocated for a discussion session. The committee shall evaluate the seminar based on the style of presentation, technical context, coverage of the topic, adequacy of references, depth of knowledge and the overall quality. Moreover, each student has to submit a seminar report in the prescribed format given by the Institution.

The weights for awarding 100 marks (totally internal) for the seminar-1 is as follows.

- 1. Presentation (Verbal & Nonverbal Communication skills) : 20 Marks
- 2. Breadth of the topic (Coverage : Content of the slides and speech) : 20 Marks
- 3. Depth of knowledge (Ability to answer questions) : 30 Marks
- 4. Seminar Report in the prescribed format given by the Institution : 30 marks

E. Guidelines for the Mini Project

Each student has to do a mini project related to the branch of specialization under the guidance of a faculty member. It has to be approved by a committee constituted by the institute concerned. It is recommended that the same faculty member may serve as his/her Project Supervisor during 3rd& 4th semesters. The mini project is conceptualized in such a way that, some the outcomes of the work can be utilized in the selection of the thesis. Hence on completion of mini project the student can suggest possible list of their thesis topic in the second semester itself. The implementation of the mini project can be software and/or hardware based one. Mini project is envisaged as a way for implementing *problem based learning*. Problems of socially relevance and/or problems identified by the institute/ research organizations/ industry/ state should be given high priority. In such interdisciplinary and inter institutional projects, a student can have

co-guide(s) from other department/ institute/ research organizations/ industry. The university encourages *interdisciplinary projects* and *problem based learning* strategy.

There should be a Progress Evaluation Committee (PEC) for each student which is constituted by three faculty members : (1) HoD as chairman, (2) Faculty advisor, and (3) Guide. This committee should evaluate the mini project through 2 presentations - (i) a preliminary presentation which is to be held soon after finalizing the topic, and (ii) a final presentation towards the end of the semester. In between, the Guide and /or the Co-guide is entrusted for the continuous evaluation of the work progress.

The weights for awarding 100 marks (totally internal) is as follows.

- (1) Preliminary Presentation (PEC) : 20 Marks
- (2) Progress Evaluation (Guide and/or Co-guide) : 30 Marks
- (3) Final Presentation-cum-demonstration (PEC): 30 Marks
- (4) Report (Mandatory) : 20 Marks

F. Guidelines for Seminar-II

Students have to present a second seminar in 3rd semester. It is highly recommended that seminar-2 may report the *literature survey* being conducted as a requirement for doing the main project. Since the topic for the main project topic is to be finalized in the beginning of the 3rd semester, one can perform the literature search and present it as a seminar towards the middle of the semester. The Progress evaluation Committee (PEC) formed in the second semester itself, will be the panel of evaluators for Seminar-2 also. The presentation of seminar-2 shall be of 20 minutes duration with another 5 minutes allocated for a discussion session. The committee shall evaluate the seminar based on the style of presentation, technical context, coverage of the topic, adequacy of references, depth of knowledge and the overall quality. Moreover, each student has to submit a seminar report in the prescribed format given by the Institution. It is recommended that the report for seminar-2 may be in the form of a technical paper which is suitable for publishing in Conferences / Journals as a review paper. This makes a student learn how to publish a paper and consequently develops a publishing culture among the PG student community.

The weights for awarding 100 marks (totally internal) for the seminar-2 is as follows.

- 1. Presentation (Verbal & Nonverbal Communication skills) : 20 Marks
- 2. Breadth of the literature review (Coverage : Content of the slides and speech) : 20 Marks
- 3. Depth of knowledge (Ability to answer questions) : 30 Marks
- 4. Seminar Report / Paper in the prescribed format given by the Institution : 30 marks

G. Guidelines for the Project Work

Project work is to be carried out in the 3^{rd} and 4^{th} semesters and also to be evaluated in both semesters. It is recommended that students should execute the project work using the facilities of the institute itself. However, external projects can be taken up in the 4^{th} semester, if that work solves a technical problem of the external firm. Prior sanction should be obtained from the Head of Institution before taking up external project work. Project evaluation committee should study the feasibility of each project work before giving consent. The project work is also to be evaluated continuously, during $3^{rd} \& 4^{th}$ semesters through presentation sessions. Based on these evaluations the grade is finalized in the fourth semester. The internal committee (PEC) and an External Expert shall evaluate the project based on *four* presentations by the student during these semesters. The *first* presentation in 3rd semester should be held in the beginning of the semester which would highlight the topic, objectives, and the methodology. The *second* presentation in the same semester should bring out the work progress through the preliminary results and is to be conducted towards the end of the semester. These are evaluated totally internally by the PEC.

The Project Phase - II will be an extension of the Project Phase - I. A student has to prepare a project report, namely the thesis, towards the end of the 4^{th} semester. Both the presentation and the thesis will be evaluated by the Committee and the External expert. The *third* presentation on project is to be made towards the end of 4^{th} semester as a final internal presentation. At least one technical paper is to be published in Journals / Conferences so as to meet the requirements for final external submission. The *fourth* presentation is a *repetition* of the third one, but before an *External Expert*, appointed through the process of submitting the M. Tech. Thesis to the University (Cluster). The external expert will assess the quality and quantity of the work done by the student in the final (fourth) presentation. The comments of the examiners during this presentation should be incorporated in the work and report and is to be submitted as hard bound copies before the program exit by the student.

The weights for awarding 150 marks for Project shall be as follows.

- A. 3rd Semester Marks : 50 for Project Progress Evaluation
 - 1. Preliminary Presentation, evaluated by PEC : 15 Marks
 - 2. Progress evaluation by the Project Supervisor/s : 20 Marks
 - 3. End-semester presentation, evaluated by PEC : 15 Marks
- B. 4th Semester Marks : 100 for Final Evaluation
 - 1. Project evaluation by the supervisor/s : 30 Marks
 - 2. Final internal evaluation by PEC : 40 Marks
 - 3. Evaluation of the thesis presentation by an External Expert : 30 Marks