APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Master of Technology

Curriculum, Syllabus and Course Plan

Cluster	: 10- Kannur
Branch	: Electrical and Electronics Engineering
Stream	: POWER SYSTEMS
Year	: 2018
No. of Credits	: 66

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Cluster No. 10 for PG Programs (Engineering Colleges in Kannur, Wayand & Kasaragod Districts)

Curriculum, Scheme of Examinations and Syllabi for M. Tech. Degree Program with effect from Academic Year 2019 - 2020 Electrical & Electronics Engineering

M. Tech.

in

Power Systems

(No. of Credits: 66)

on de.		Name	L-T-P	arks	End Semester Examination		
Examinati Slot	Course Co			Internal M	Marks	Duration	Credits
А	10EE6401	Advanced Mathematics and	3-0-0	40	60	3	3
		Optimisation Techniques					
В	10EE6403	Power Electronic Application in	3-0-0	40	60	3	3
		Power System					
С	10EE6405	Modelling of Electrical Machines	3-1-0	40	60	3	4
D	10EE6303	Power System Dynamics	3-0-0	40	60	3	3
E	10EE6xxx	Elective I	3-0-0	40	60	3	3
S	10GN6001	Research Methodology	0-2-0	100	-		2
Т	10EE6409	Seminar I	0-0-2	100	-		2
U	10EE6411	Power System Lab I	0-0-2	100	-		1
		Total	15-3-4	500	300		21

SEMESTER 1

TOTAL CONTACT HOURS 22 : TOTAL CREDITS 21 :

Elective I

- Power System Security 10EE6313
- 10EE6415
- Power System Instrumentation Power Quality Issues and Remedial Measures Distribution System Planning and Automation 10EE6117
- 10EE6417

SEWIESTER 2							
u	le.	Name	L-T-P		End Seme	ester ion	
Examinatic Slot	Course Coo			Internal Marks	Marks	Duration	Credits
А	10EE6402	Digital Protection of Power System	3-1-0	40	60	3	4
В	10EE6404	Computer Aided Power System Analysis	3-0-0	40	60	3	3
С	10EE6306	Power System Operation and Control	3-0-0	40	60	3	3
D	10EE6xxx	Elective II	3-0-0	40	60	3	3
E	10EE6xxx	Elective III	3-0-0	40	60	3	3
V	10EE6408	Mini Project	0-0-4	100	-		2
U	10EE6412	Power System Lab II	0-0-2	100	-		1
		Total	15-1-6	400	300		19

TOTAL CONTACT HOURS	:	22
TOTAL CREDITS	:	19

SEMESTED 2

Elective II

- Static VAR Controllers and Harmonic Filtering 10EE6414
- Sustainable and Translational Engineering 10EE6416
- Power Conversion in Renewable Energy Systems 10EE6116
- 10EE6124 High voltage DC and AC Transmission

Elective III

- 10EE6422 Smart Grid Technologies and Applications Power System Stability and Reliability 10EE6424 Energy Management 10EE6126
- Distributed Generation and Micro grid 10EE6132

SEMESTER 3

io							End Semester		
Examinat n Slot	Course Code.	Name	L-T-P	Internal Marks	Marks	Durati	Credits		
А	10EE7xxx	Elective IV	3-0-0	40	60	3	3		
В	10EE7xxx	Elective V	3-0-0	40	60	3	3		
Т	10EE7401	Seminar II	0-0-2	100			2		
W	10EE7403	Project (Phase I)	0-0-12	50			6		
		Total	6-0-14	230	120	-	14		

TOTAL CONTACT HOURS 20 : 14

TOTAL CREDITS •

Elective IV

- Flexible AC Transmission Systems 10EE7405
- **Restructured Power System** 10EE7407
- **Electric Vehicle Systems** 10EE7107
- 10EE7117 Soft Computing Technique

Elective V

- Transient Analysis in Power System 10EE7411
- 10EE7413 SCADA System and Applications
- **Biomedical Instrumentation** 10EE7415
- 10EE7111 **Custom Power Devices**

SEMESTER 4

uo	ode.						End Sem Examina	ester tion	
Examinati Slot	Course Co	Name	2		L-T-P	Internal Marks	Marks	Duration	Credits
W	10EE7404	Project (Phase 2)			0-0-22	70	30		12
		Total			0-0-22	70	30	-	12
TOTA	L CONTAC	T HOURS :		22					
TOTA	L CREDITS	:		12					

TOTAL NUMBER OF CREDITS: 66

SEMESTER - I

Syllabus and Course Plan

Co	ourse No.	Course Name	L-T-P	Credits	Ye: Intro	ar of luction	
10	DEE6401	Advanced Mathematics & Optimization Techniques	3-0-0	3	20)18	
1. I 2. E	Course Objectives Develop a conceptual basis for Linear algebra Equip the Students with a thorough understanding of vector spaces and optimization techniques 						
Vec fact pro	Syllabus Vector Spaces - linear Transformations - orthogonality - least square solutions - matrix factorizations - Linear programming problems - Simplex Methods - Integer programming - Non-linear programming (Unconstrained and constrained) - quadratic programming - Convex programming - Dynamic programming						
Upor spac Engi	n successful o es and optimi neering	Expect completion of the course, stude ization theory which are essenti	ed Outcome nts will have al for higher	basic knowl studies and	edge of research	vector in	
1. I 2. H 3. H 4. H 5. S 6. H S 7. S 1	 References 1. David C. Lay, Linear Algebra, Pearson Education, 4/e, 2012 2. Handy A. Taha, Operations Research an Introduction, PHI, 9/e, 2011 3. R. Hariprakash and B. Durga Prasad, Operations Research, Scitech. 1/e, 2010 4. B. S. Goel and S. K. Mittal, Operations Research, Pragathi Prakashan, 25/e, 2009 5. Seymour Lipschulz, Linear Algebra, Tata McGraw Hill 6. K. V. Mittal and C. Mohan, Optimization Methods in Operations Research and System Analysis, 3/e, New Age International Publishers 7. Singiresu S Rao, Engineering Optimization Theory and Practice, 3/e, New Age 						
		COURSE P	PLAN				
Module		Contents			Hours Allotted	% of Marks in End -semester	
I	I Vector spaces and subspaces, null space, column space of a matrix; inearly independent sets and bases; Coordinate systems; dimension of a vector space; rank; change of basis; linear transformations – properties - kernel and range - computing kernel and range of a linear transformation – matrix representation of a linear operator - Invertible linear operators					15	
п	III Inner product, length and orthogonality; orthogonal sets; orthogonal projections; Gram Schmidt process; least square solutions; Inner product spaces; QR factorization ; Singular value decomposition 7 15						
	Linear pro	FIRST INTERN	AL EXAM	- two nha	se		
III	simplex programmin	method-Dual simplex method-Color simplex method-color simplex method and the second se	ethod, Into Gomory's	eger line Cutting pla	ear 7 ne	15	

	method, Zero-One Programming						
	Unconstrained non-linear programming; Steepest descent method,						
IV	Conjugate Gradient method, Powel's method, Hooke-Jeeves method	7	15				
	SECOND INTERNAL EXAM						
v	Constrained non-linear programming - Complex method - Cutting plane method - method of feasible directions - Kuhn-Tucker conditions	7	20				
VI	Convex programming problem - Exterior penalty method – Quadratic programming - Dynamic programming - representation of multi stage decision process – sub-optimization and principle of optimality - computational procedure in dynamic programming	7	20				
	END SEMESTER EXAM						

Course No.	Course Name	L-T-P	Credits	Year of Introduction	
10EE6403	Power Electronic Application in Power	3-0-0	3	2018	
	System				
	Course Obj	ectives			
1. Familiarize th	e power semiconductor switch	ing devices for	or power con	iversion	
2. Understand t	he principle of working of	resonant con	nverter and	resonant switch	
converter					
3. Understand d	ifferent modulation techniques				
4. Understand po	ower electronic applications in l	FACTS			
Syllabus Power semiconductor switching devices - Switching characteristics, Application of DC- DC converters in renewable energy systems- Buck, boost, buck-boost and Ćuk Topologies, Inverters - Single phase and Three phase VSI, CSI– switching scheme and harmonic elimination, Space Vector modulation - Current control methods in Voltage source inverters, multi-level inverters- topologies - principle of operation and modulation strategies, Resonant Converters, HVDC transmission– reactive power requirement – control of converters, Reactive power compensator, Flexible AC transmission systems (FACTS) - shunt and series compensators, Phase angle compensator					
	Expected Ou	itcome			
Upon successful	completion of this course, stud	lents will be	able to:		
1. Choose a	suitable power semiconductor of	device for a s	pecific appli	ication	
2. Develop 1	deal and non-ideal model of po	wer devices			
3. Design an	d develop power converter top	ologies			
1 D' 337 TT' 1	Referen	ces	XX7'1 T		
I. Bin Wu, High	Power Converters and AC Dri	ves. IEEE Pr	ess. Wilev I	nterscience, 2006	

- BIN WU, HIGN POWER CONVERTERS and AC Drives, IEEE Press, Wiley Interscience,
 Ned Mohan, et al., Power Electronics: Converters, Design and Applications, John Wiley and Sons, 2010

3. I	3. L. Umanand, Power Electronics Essentials and Applications, John Wiley and Sons, 2010						
4.	4. G. K. Dubey, et al., Thyristorised Power Controllers, New Age International						
	COURSE PLAN						
Module	Contents	Hours Allotted	% of Marks in End -semester				
I	Power semiconductor switching devices - The ideal switch, characteristics of ideal switches - two quadrant and four quadrant switches Switching characteristics of Power Diodes, SCRs, MOSFETs,	4	15				
п	IGB1s, CC1s, GT0s thyristorsApplication of DC-DC converters in renewable energy systemsIntroduction - Buck, boost, buck-boost and Ćuk Topologies - Representation with ideal switches, Steady state analysis in continuous conduction mode using inductor volt-sec balance - current and voltage ripples - design relations for inductor and capacitors, Discontinuous Conduction Mode operation of basic buck and boost converter	6	15				
	FIRST INTERNAL EXAM						
III	Inverters -Single phase and Three phase VSI, CSI. Pulse width modulated switching schemes-sinusoidal PWM and Selective Harmonic Elimination of Single phase and Three phase Voltage source Inverters	4	15				
	Space Vector modulation. Current control methods in Voltage source Inverters. Introduction to multi-level inverters. – Diode clamped, flying capacitor and cascaded multilevel inverter topologies - principle of operation and modulation strategies	3 15					
IV	Resonant Converters : Series resonant inverter circuit with unidirectional and bidirectional switches - – half bridge and full bridge configurations	4	15				
	voltage and zero current switching resonant converters	3					
	SECOND INTERNAL EXAM						
v	HV DC transmission. Power flow control in DC link. Converter and inverter output equations, Graetz circuit. 12 pulse converter. Control of converters. Harmonics- characteristic-means of reducing harmonics. Reactive power requirements in HVDC substations	4	20				
	Reactive power compensator using instantaneous reactive power theory, stationary to rotating reference frame transformation	3					
VI	Flexible AC transmission systems (FACTS) – AC transmission line model. Principle of shunt compensation – shunt compensators – switched reactor- switched capacitor – static VAR	4					

	compensator, direct and indirect control of STATCOM		20		
	Principle of series compensation – switched series compensators ;				
	Principle of phase angle compensation – phase angle compensator	3			
END SEMESTER EXAM					

Course No.	Course Name	L-T-P	Credits	Year of Introduction
10EE6405	Modelling of Electrical Machines	3-1-0	4	2018

Course Objectives

1. To develop the basic elements of generalized theory

2. To derive the general equations for voltage and torque of all type of rotating machines

3. To deal with the steady state and transient analysis of rotating machines

Syllabus

Unified approach to the analysis of electrical machine performance - per unit system - basic two pole model of rotating machines- Primitive machine - transformer and rotational voltages in the armature voltage and torque equations resistance, inductance and torque matrix-Transformations - passive linear transformation in machines-invariance of power -Park's transformation-DC Machines- Application of generalized theory to separately excited, shunt, series and compound machines- Steady state and transient analysis, transfer functions- Sudden short circuit of separately excited generator, sudden application of inertia load to separately excited dc motor-Synchronous Machines- synchronous machine reactance and time constants-Primitive machine model of synchronous machine with damper windings on both axes- Balanced steady state analysis-power angle curves-Transient analysis- sudden three phase short circuit at generator terminals – armature currents and torque - Transient power angle curve-Induction Machines- Primitive machine representation- Steady state operation-Equivalent circuit-Double cage rotor representation - Equivalent circuit -Single phase induction motor- Voltage and Torque equations.

Expected Outcome

Upon successful completion of this course, students will be able to:

- 1. Analyse machine behaviour based on the voltage and torque equations of the machine.
- 2. Analyse the transient behaviour of machines

References

- 1. P. S. Bhimbra, 'Generalized Theory Of Electrical Machines', Khanna Publishers, 2002
- 2. Charles V. Johnes, 'Unified Theory Of Electrical Machines'.
- 3. Adkins, Harley, 'General theory of ac machines'.
- 4. C. Concordia, 'Synchronous Machines'.
- 5. M. G. Say, 'Introduction to Unified Theory of Electrical Machines'
- 6. E. W. Kimbark, 'Power System Stability Vol. II'

COURSE PLAN

Module	Contents	Hours Allotted	% of Marks in End -semester	
1	Unified approach to the analysis of performance – per unit system – basic two pole model of rotating machines – Primitive machine – special properties assigned to rotor windings – transformer and rotational voltages in the armature voltage and torque equations resistance, inductance and torque matrix	7	15	
Ш	Transformations - passive linear transformation in machines- invariance of power –transformation from a displaced brush axis-transformation from three phase to two phase and from rotating axes to stationary axes-Park's transformation-Physical concept- Restrictions of the Generalized theory of machines	7	15	
	First Internal Exam			
III	DC Machines: Application of generalized theory to separately excited, shunt, series and compound machines. Steady state and transient analysis, transfer functions. Sudden short circuit of separately excited generator, sudden application of inertia load to separately excited dc motor	10	15	
IV	Synchronous Machines: synchronous machine reactance and time constants-Primitive machine model of synchronous machine with damper windings on both axes. Balanced steady state analysis-power angle curves. Transient analysis- sudden three phase short circuit at generator terminals- Armature currents and torque - Transient power angle curve	12	15	
	SECOND INTERNAL EXAM			
v	Induction Machines: Primitive machine representation - Transformation- Steady state operation-Equivalent circuit - Torque slip characteristics- Double cage rotor representation - Equivalent circuit	10	20	
VI	Single phase induction motor- Revolving Field Theory - equivalent circuit- Voltage and Torque equations-Cross field theory-Comparison between single phase and poly phase induction motor	10	20	
END SEMESTER EXAM				

Course No.	Course Name	L-T-P	Credits	Year of Introduction		
10EE6303	Power System Dynamics	3-0-0	3	2018		
Course Prerequisites						
Numerical Met	Numerical Methods, Electrical Machines, Power System Analysis					

Course Objectives

This course aims to give basic knowledge about the dynamic mechanisms behind angle and voltage stability problems in electric power systems, including physical phenomena and modelling issues.

Syllabus

Power system stability considerations, synchronous machine representation, stability of dynamic systems, d-q transformation, state space representation concept, transient stability, numerical integration method, voltage stability

Expected Outcomes

At the end of this course, students will be able to analyse and understand the electromagnetic and electromechanical phenomena taking place around the synchronous generator.

Text books

1 Power System Stability and Control: -P. Kundur - McGraw Hill publications

2.Power System Dynamics: Stability and Control: – K.R.PADIYAR, II Edition, B.S. Publications

3.Power system control and stability P.M. Anderson and A.A. Fouad, John Wiley & sons 4.Computer modelling of Electric Power Systems, J. Arrillaga and N. R. Watson, John Wiley & sons, 2001

Course plan					
Module	Content	Hours	Semester Exam Marks (%)		
Ι	Power system stability considerations – definitions- classification of stability-rotor angle and voltage stability- synchronous machine representation –classical model-load modelling concepts-modelling of excitation systems- modelling of prime movers.	6	15		
Π	Stability of Dynamic systems, Synchronous machine theory and modelling- armature and field structure, parks transformation, machine with multiple pole pairs- mathematical description, d-q transformation, per unit representation, equivalent circuit for d-q axes, steady state analysis- voltage-current and flux linkage, phasor representation, rotor angle – steady state equivalent circuit	8	15		
	First Internal Examination				
III	State space representation concept, Eigen properties of the state vectors, analysis of stability- small signal stability of a single machine connected to infinite bus system, classical representation of generator, small signal stability of a multi machine connected to infinite bus system. Characteristics of small - signal stability problems	8	15		
IV	Transient stability:- Concept of transient stability, response to a step change in mechanical power input, Swing equation- multi-machine analysis, factors influencing transient stability	6	15		
	Second Internal Examination				
V	Numerical integration methods – Euler method – R-K method (4th order), critical clearing time and angle-	8	20		

	methods for improving transient stability.		
VI	Voltage stability:- Basic concept, transmission system characteristics, generator characteristics, load characteristics, PV curve, QV curve and PQ curve, characteristics of reactive power compensating devices. Voltage collapse and prevention of voltage collapse.	6	20
	TOTAL	42	100
End Semester Examination			

Elective I

Course	e No.	Course Name	L-T-P	Credits	Year of Introduction	
10EE6	5313	Power System Security	3-0-0	3	2018	
Course Prerequisites						
Basic Kn	owledge	e on power system at UG level				
To give t	ha Stude	Course Objective	es			
	ne Stude	chi-	tion			
	o ha far	viliar with the power system sacurity i	uon.	ontinganov	studios	
- 10		Syllabus	ssues and e	ontingency	studies.	
Power sv	stem sta	bility-security-observability and relia	hility : Pow	ver system	state estimation.	
Power sy	stem se	curity assessment: Basis of evolution	narv optimiz	zation tech	niques: Security	
in Deregu	ilated E	nvironment, Contingency analysis	imj optimi			
		Expected Outcom	ies			
Student underst analysis	and the s and sel	successfully complete this course w fundamental concepts of power syst lection methods to improve system set	will have d em security curity	lemonstrate	ed an ability to opt contingency	
		Text books				
1. Wood	and W	ollenberg, "Power generation, operat	tion and co	ntrol, John	Wiley & Sons,	
2000.	_					
2.K.Bhatt	tacharya	, M.H.J Bollen and J.E. Daaider, "Op	peration of 1	restructured	d power system"	
Kluwer P	ower El	ectronics and Power System series (2)	001)	<i>.</i> .		
3.N.S.Ka	u, Optir	nization Principles: Practical Applica	itions to the	e operation	and Markets of	
4 Solly H	The Powe	er industry . aking competition work in Electricity	" John Wil	av 2002		
4.5ally H	unit, Ivi	aking competition work in Electricity	, JOIIII W II	ey, 2002		
		Course plan				
		A			Semester	
Module		Content		Hours	Exam	
	D- '	Demonstra Demonstra (1919)	•		Marks (%)	
Ι	Basic observ affectin	concepts: Power system stability ability and reliability, deregulation ng power system security, decompos	-security- , factors , fition and	8	15	

	multilevel approach, state estimation, system monitoring, security assessment, static and dynamic – online and offline, security enhancement.			
Π	Power system state estimation: DC and AC network, orthogonal decomposition algorithm, detection identification of bad measurements, network observability and pseudo measurements, application of power system state estimation, introduction to supervisory control and data acquisition.	6	15	
	First Internal Examination			
ш	State space representation concept, Eigen properties of the state vectors, analysis of stability- small signal stability of a single machine connected to infinite bus system, classical representation of generator, small signal stability of a multi machine connected to infinite bus system. Characteristics of small - signal stability problems	8	15	
IV	Basis of evolutionary optimization techniques, preventive, emergency and restorative controls though non- linear programming (NLP) and linear programming(LP)methods.	6	15	
	Second Internal Examination			
V	Security in Deregulated Environment: Need and conditions for deregulation, electricity sector structure model, power wheeling transactions, congestion management methods, available transfer capability (ATC), system security in deregulation.	8	20	
VI	Contingency analysis – linear sensitivity factors – AC power flow methods – contingency selection – concentric relaxation – bounding-security constrained optimal power flow-Interior point algorithm-Bus incremental costs.	6	20	
		42	100	
Cluster Level End Semester Examination				

Course No.	Course Name	Course Name L-T-P Credits		Year of Introduction			
10FF6/115	Power System	3_0_0	3	2018			
10EE0415	Instrumentation	3-0-0	3	2010			
	Course Objectives						
To impart princi	ples of different measureme	ent systems a	and methods	of various electrical			
parameters	parameters						
Syllabus							
Generalized performance characteristics of instruments, Classification of instruments based							

on their order; Dynamic response and frequency response studies of zero order, first order and second order instruments Signal Conditioning; Signal Processing and its Components Measurement of voltage, current, phase angle, frequency, active power and reactive power in power plants Transducers, classification & selection; introduction, Signal Processing and its Components; Measurement of voltage, current, phase angle, frequency, active power and reactive power in power plants. Introduction to SCADA; SCADA applications in Utility Automation, Industries

Expected Outcome

1. Upon successful completion of this course, students will be able to analyse the performance of measuring instruments and use it for different applications.

References

- 1. B. D. Doeblin, 'Measurement systems Application and Design', McGraw-Hill, New York.
- 2. John P. Bentley, 'Principles of Measurement System', Pearson Education.
- 3. Power System Instrumentation By Ramnath .Author Ramnath Publisher Genius Publication
- 4. J. W. Dally, W. F. Reley and K. G. McConnel, 'Instrumentation for Engineering Measurements' Second Edition, John Wiley & Sons Inc. New York, 1993
- 5. K. B. Klaasen, 'Electronic Measurement. And Instrumentation', Cambridge University Press.
- 6. Helfrick and Cooper, 'Modern Electronic Instrumentation and Measurement Techniques', Prentice-Hall of India
- 7. Jones, B. E., 'Instrumentation Measurement and Feedback', Tata McGraw Hill, 1986.
- 8. Golding, E. W., 'Electrical Measurement and Measuring Instruments', 3rd Edition
- 9. Stuart A. Boyer, 'SCADA-Supervisory Control and Data Acquisition', Instrument Society of America Publications, USA, 2004

	COURSE PLAN			
Module	Contents	Hours Allotted	% of Marks in End -semester	
I	Generalized performance characteristics of instruments – Static and dynamic characteristics, development of mathematical model of various measurement systems. Classification of instruments based on their order. Dynamic response and frequency response studies of zero order, first order and second order instruments. Theory of errors: systematic and random errors, limits of error, probable error and standard deviation. Gaussian error curves, combination of errors.	6	15	
Π	Dynamic response and frequency response studies of zero order, first order and second order instruments. Theory of errors: systematic and random errors, limits of error, probable error and standard deviation. Gaussian error curves, combination of errors.	6	15	
	FIRST INTERNAL EXAM			
III	Transducers, classification & selection of transducers, strain gauges, inductive & capacitive transducers, piezoelectric and		15	

	Hall-effect transducers, thyristors, thermocouples, photo-diodes	7			
	& photo-transistors, encoder type digital transducers				
IV	Signal Conditioning : Introduction, Signal Processing and its Components, Operational Amplifier (Op-Amp), Instrumentation Amplifiers, Isolation Amplifiers, Charge Amplifier, Analog Multipliers, Analog Dividers, Function Generator, Timers,	7	15		
	Sample and Hold Circuits, Electrical Isolators, Frequency to Voltage Converters, Grounding and Shielding.				
	SECOND INTERNAL EXAM				
V	Measurement of voltage, current, phase angle, frequency, active power and reactive power in power plants. Energy meters and multipart tariff meters. Capacitive voltage transformers and their transient behaviour, Current Transformers for measurement and protection, composite errors and transient response	8	20		
VI	Introduction to SCADA: Data acquisition systems, Evolution of SCADA, Communication technologies, Monitoring and supervisory functions, SCADA applications in Utility Automation, Industries	6	20		
	END SEMESTER EXAM				

Course No.	Course Name	L-T-P	Credits	Year of Introduction		
10EE6117	Power Quality Issues and Remedial Measures	3 - 0- 0	3	2018		
Course Prer	Course Prerequisites					
Basic know	redge of Electrical power systems & pow	er Electror	nics at UG L	evel.		
Course Obje	ectives					
To give the	Student:-					
• An in	troduction to various power quality proble	ems in the	electrical po	ower systems.		
 Analy 	se the power quality problem and identify	the remed	ial measure	28.		
• Desig prol	n and development of power electron plems.	ics based	solutions	to power quality		
Syllabus						
Introductio	n to power quality- power quality measu	ires and st	andards- In	nportant harmonic		
introducing	devices- Harmonics and measure	ements-Pov	wer qualit	y Improvement-		
DSTATCO	M-DVR-UPQC- Active Power Factor Co	rrection.				
Expected Ou	itcomes					
Students who successfully complete this course will have demonstrated an ability to						
understand	understand the power quality problems in the electrical systems ; Apply the basics of					
electrical e	electrical engineering to identify the remedial measures to power quality problems; Design					
and develop	pment of power electronics based solution	s to power	quality pro	blems.		
REFERENCES:						

1. G T Heydt, Power Quality, Star in a circle publications.

2. Dugan, Electric Power Systems Quality, Tata Mc Graw Hill.

3. K R Padiyar, FACTS controllers in Power Transmission and Distribution, New Age publications, New Delhi, 2007.

4. R Sastry Vedam, power quality VAR compensation in power systems, CRC press, NewYork, 2009.

5. A Ghosh and G Ledwich, "power quality improvement using custom power devices", IEEE Press, 2001.

6. NedMohan et al "power Electronics"

	Course plan			
Module	Content	Hou rs	Semester Exam Marks (%)	
I	Introduction -power quality-voltage quality-overview of power quality phenomena classification of power quality issues-power quality measures and standards-THD-TIF-DIN- C message weights-flicker factor-transient phenomena- occurrence of power quality problems power acceptability curves-	8	15	
Π	Important harmonic introducing devices - SMPS-Three phase power converters – arcing devices- saturable devices-fluorescent lamps- effect of power system harmonics on equipment and loads.	6	15	
III	Balancing of source currents- Steinmetz network. Harmonics and measurements : Power factor reduction due to harmonics-Distortion power-distortion power factor and displacement power factor- Triplen harmonics. Power Quality Analysers-Voltage, Current, Power and Energy measurements	8	15	
IV	Power quality Improvement:-DSTATCOM for Harmonic Filtering, reactive power compensation and load balancing- d-q domain control and IRPT control of three phase DSTATCOM- Three-phase four-wire systems.	6	15	
	Second Internal Examination			
V	Dynamic Voltage Restorers for sag, swell and flicker problems – structure and control- Series active power filtering techniques for harmonic cancellation and isolation- Uninterruptible power supplies-constant voltage transformers	8	20	
VI	UPQC: Structure and control-Left shunt UPQC-Right shunt UPQC Active Power Factor Correction: Single Phase Front End, Control Methods for Single Phase APFC, Three Phase APFC and Control Techniques.	6	20	
	-	42	100	
End Semester Examination				

Cou	rse No.	Course Name	L-T-P	Credits	Year Introduc	of ction
10E	EE6417	Distribution System Planning and Automation	3-0-0	3	2018	
		Cour	se Objective	5		
Object	tive of the o	course is to introduce various	advancemen	ts in the distri	bution systen	18.
Power Planni optima sequer power and vo	System C ing, Desigr al location nce; Distrik ; Energy m bltage impre-	Sylla oncepts; Loads and Energy a and Operation methodolog of substation; Optimization pution automation; Power S metering – Tariffs; Deregulate ovement.	bus Forecasting A gy; Distributi on of distriby ystem reliabi ed Systems; S	Analysis - An on load flow oution syster lity; Consum Static VAR s	alysis of time v; load forec ns; Optimum er Services; ystem; loss re	e series; asting ; n phase theft of eduction
	0 1	Expected	d Outcome			
Upon 1. D 2. D	successful Distribution	completion of this course, st system expansion planning automation	udent will be	able to do		
 S. F Tur Col Hei Par E. Per Dhi 	Pabla, Elec ranGonen, ' lin Bayliss inemann, 14 nsini, "Elec Lakervi& 1 regrimus Lt illan B. S.,	"Power Distribution Sy "Electrical Power Distribution s, "Transmission and Dist 996 trical Distribution Engineerir E. J. Holmes, "Electricity D d. "Power System Reliability, S	n Engineering ribution Elect ng" Distribution N Safety and Ma	i., IMH, 199 g", McGraw-I ctrical Engin fetwork Designagement",	7 Hill. eering", But gn", 2 nd Editic <u>An Arbor San</u>	terworth on, Peter n 1981
		COUK	SE FLAN			
Module		Contents			Hours Allotted	% of Marks in End -semester
I	I Power System: General Concepts - Distribution of power - Management - systems study - Loads and Energy Forecasting: Power loads - Area Preliminary survey load forecasting 3 Regression analysis - Correlation analysis - Analysis of time series - Factors in power system loading -Technological					15
II	Planning, calculation systems, c abnormal urban di expansion design con lines – sol	Design and Operation ns, Network elements - Dist listribution systems with loop loads, Voltage control - 1 stribution - load variation planning – load characterin neepts– optimal location of su ution technique.	methodolo ribution load os - fault stud ine circuits ons Distribu stics – load ubstation – de	gy: System flow: Radial ies - effect of - harmonics- tion system forecasting – sign of radial	6	15
		FIRST INTE	ERNAL EXA	Μ		

	Optimization of distribution systems: Introduction, Costing of Schemes, Typical network configurations - Long and Short term planning, network cost modelling, voltage levels	3			
	Synthesis of optimum line networks -Application of linear		15		
111	programming to network synthesis -Optimum Phase sequence – Economic loading of distribution transformers- Worst case loading of distribution transformers	4			
	Distribution automation: -Definitions - Project Planning- Communication, Sensors, Supervisory Control and Data Acquisition (SCADA) Consumer Information systems (CIS)	4			
	Geographical Information Systems (GIS)		15		
IV	Power System reliability: Basic Reliability Concepts- Series,				
	Parallel, Series-Parallel Systems Development of State	4			
	Transition Model to determine the Steady State Probabilities				
	SECOND INTERNAL EXAM				
	Consumer Services: Supply industry - Natural monopoly -	4			
	Regulations - Standards - Consumer load requirements				
V	Cost of Supply - load management - theft of power - Energy	3	20		
	metering - Tariffs: Costing and Pricing, Classification of				
	Tariffs.				
	Deregulated Systems: Reconfiguring Power systems- Unbundling	4			
X7X	Electric Utilities- Competition and Direct access voltage control	4	20		
VI	Application of shunt capacitance for loss reduction – Harmonics		20		
	in the system – static VAR systems – loss reduction and voltage	2			
	improvement.	3			
END SEMESTER EXAM					

Course No	Course Name	L.T.P	Credits	Year of		
		12-1-1	Creatis	Introduction		
10GN6001	Research Methodology	0-2-0	2	2018		
Course Prerequisites						
(1) Basic skill of	f analyzing data earned throu	gh the project	t work at UG	level;		
(2) Basic knowle	edge in technical writing and	communicati	ion skills earr	ned through seminar at		
UG level.				-		
Course Objecti	ves					
(1) To attain a p	erspective of the methodolog	y of doing res	search;			
(2) To develop s	kills related to professional c	ommunicatio	n and technic	al report writing.		
As a tutorial typ	As a tutorial type course, this course is expected to be more learner centric and active					
involvement from the learners are expected which encourages self-study and group						
discussions.						
The faculty mainly performs a facilitator's role						

Syllabus

Overview of research methodology - research process - scientific methods -research problem and design - research design process - formulation of research task, literature review and web as a source - problem solving approaches - experimental research - ex post facto research. Thesis writing - reporting and presentation - interpretation and report writing - principles of thesis writing- format of reporting, oral presentation - seminars and conferences, Research proposals - research paper writing - publications and ethics - considerations in publishing, citation, plagiarism and intellectual property rights. Research methods – modeling and simulation – mathematical modeling – graphs - heuristic optimization - simulation modeling measurement design – validity – reliability – scaling - sample design - data collection methods and data analysis.

Expected Outcomes

The students are expected to :

(1) Be motivated for research through the attainment of a perspective of research methodology;

(2) Analyze and evaluate research works and to formulate a research problem to pursue research;

(3) Develop skills related to professional communication, technical report writing and publishing

papers.

References

1. C.R Kothari, *Research Methodology: Methods & Techniques*, New Age International Publishers, 2004.

2. R. Panneerselvam, Research *Methodology*, Prentice Hall of India, New Delhi, 2012.

3. K. N. Krishnaswamy, Appa Iyer Sivakumar, and M. Mathirajan, *Management Research Methodology, Integration of Principles*, Pearson Education, 2009.

4. Deepak Chawla, and MeenaSondhi, *Research Methodology – Concepts & Cases*, Vikas Publishing House, 2011.

5. J.W. Bames, *Statistical Analysis for Engineers and Scientists*, McGraw Hill, New York, 1994.

6. Schank Fr., *Theories of Engineering Experiments*, Tata McGraw Hill Publication.

7. Willktnsion K. L, Bhandarkar P. L, Formulation of Hypothesis, Himalaya Publication.

8. Douglas C Montgomery, Design and analysis of experiments, Wiley International

9. Ranjit Kumar, *Research Methodology: A step by step guide for beginners*, Pearson Education.

10. Donald Cooper, Business Research Methods, Tata McGraw Hill, New Delhi.

11. Leedy P D, *Practical Research : Planning and Design*, 4th Edition, N W MacMillan Publishing Co

12. Day R A, *How to Write and Publish a Scientific Paper*, Cambridge University Press, 1989

13. Coley S M and Scheinberg C A, Proposal Writing, 1990, Newbury Sage Publications.

14. Sople, *Managing Intellectual Property: The Strategic Imperative*, Prentice Hall of IndiaNew Delhi, 2012

15. Manna, Chakraborti, Values and Ethics in Business Profession, Prentice Hall of India, New Delhi, 2012.

16. Vesilind, Engineering, Ethics and the Environment, Cambridge University Press.

17. Wadehra, B.L. Law relating to patents, trademarks, copyright designs and geographical indications, Universal Law Publishing

COURSE PLAN

Module	Contents	Hours Allotted	% of Marks in End -semester
I	Overview of Research Methodology : Research concepts, meaning, objectives, motivation, types of research, research process, criteria for good research, problems encountered by Indian researchers, scientific method, research design process.	5	No. and
п	Research Problem and Design : Formulation of research task, literature review, methods, primary and secondary sources, web as a source, browsing tools, formulation of research problems, exploration, hypothesis generation, problem solving approaches, introduction to TRIZ (TIPS), experimental research, principles, laboratory experiment, experimental designs, ex post facto research, qualitative research.	5	semester examina Tion
FIR	ST ASSESSMENT	1	
ш	Thesis Writing, Reporting and Presentation : Interpretation and report writing, techniques of interpretation, precautions in interpretation, significance of report writing, principles of thesis writing, format of reporting, different steps in report writing, layout and mechanics of research report, references, tables, figures, conclusions, oral presentation, preparation, making presentation, use of visual aids, effective communication,	4	
IV	preparation for presentation in seminars and conferences Research proposals, Publications, Ethics and IPR : Research proposals, development and evaluation, research paper writing, layout of a research paper, journals in engineering, considerations in publishing, scientometry, impact factor, other indexing like h-index, citations, open access publication, ethical issues, placiarism, software for plagiarism, abacking, intellactual	5	
	property right (IPR), patenting case studies.		
SEC	COND ASSESSMENT	1	
V	Research Methods - Modeling and Simulation : Modeling and simulation, concepts of modeling, mathematical modeling, composite modeling, modeling with ordinary differential equations, partial differential equations (PDE), graphs, heuristics and heuristic optimization, simulation modeling.	5	
VI	Research Methods - Measurement, Sampling and Data Acquisition : Measurement design, errors, validity and reliability in measurement, scaling and scale construction, sample design, sample size determination, sampling errors, data collection procedures, sources of data, data collection methods, data preparation and data analysis	5	
	END SEMESTER EXAM		

Course No.	Course Name	L-T-P	Credits	Year of Introduction		
10EE6409	Seminar I	0-0-2	2	2018		
	Cou	rse Objective	5			
To make students						
1. Identify t	the current topics in the spec	cific stream.				
2. Collect th	he recent publications relate	d to the identif	fied topics.			
3. Do	a detailed study of a selec	cted topic base	ed on current	t journals, published		
papers an	nd books.					
4. Present a	seminar on the selected top	oic on which a	detailed study	y has been done.		
5. Improve	the writing and presentation	n skills.				
Syllabus						
Individual student	ts are required to choose a to	opic of their in	terest in cons	ultation with faculty		
and present for ab	out 30 minutes. They will b	e guided about	t sound modu	lation, sequence of		
presentation, eye	contact and writing on the b	lack board.				
Students have to s	submit a report on the topic	in the prescribe	ed format.			
Expected Outcom	nes					
Upon the complet	ion of this course, students	will have the a	bility:			
 To enhance 	e the reading ability require	d for the litera	ture review			
 To identify 	y hot research topics in the	relevant field				
• To analyze	e technical problems in a cri	itical way;				
 To develop 	p skills regarding profession	nal communica	tion			
• To write te	echnical reports					
• 🗆 To mak	e effective power point pres	sentation				
Internal Continu	ious Assessment: 100 mar	ks				
Presentation (Ver	Presentation (Verbal & Nonverbal Communication skills) : 20 Marks					
Breadth of the topic (Coverage : Content of the slides and speech) : 20 Marks						
Depth of knowled	lge (Ability to answer quest	ions) : 30 Marl	ΧS			
Seminar Report in	the prescribed format give	n by the Institu	ition : <u>30 m</u> ai	ks		

Course No.	Course Name	L-T-P	Credits	Year of Introduction	
10EE6411	Power System Lab I	0-0-2	1	2018	
	Cour	se Objectives	5		
1. Ability to wr	ite program for load flow an	nalysis and co	onduct differ	ent types of stability	
analysis, harn	nonic analysis and tie line con	ntrol of power	systems		
2. To conduct l	high voltage testing of insu	lators, variou	s studies on	power line training	
systems and r	elays				
	Sylla	bus			
Experiments					
1. Formation of YBUS matrix (programming) by step by step method and singular					
transformations method					
2. Load flow	analysis (Programming)	using Gauss	Seidal me	thod by polar and	

rectangular

- 3. Load flow analysis (Programming) using Newton-Raphson and fast decoupled methods
- 4. Z BUS formation (Programming) using building up algorithm
- 5. Economic Dispatch (Programming)
- 6. Unit commitment problem (Programming)
- 7. Load frequency control (Programming)
- 8. Optimal Load Flow (Programming)
- 9. Develop program for weighted least squares (WLS) linear state estimation and non-linear state estimation
- 10. Develop program for DC load flow weighted least squares (WLS) sequential state estimation
- 11. Measurement of sequence reactance of three phase alternator and three phase transformer
- 12. Measurement of parameters of three phase alternator
- 13. Active and Reactive Power Control of Alternator
- 14. Determination of Transmission line parameters, SIL, Regulation, Efficiency and Voltage control of Transmission Line Training System

Out of the above a minimum of nine experiments are to be conducted. In addition to the above, the Department can offer a few newly developed experiments

Internal Continuous Assessment: 100 marks

- 1. Practical Records / Results summing to a total of 40 Marks
- 2. Regular Class Viva-Voce summing to a total of 20 Marks
- 3. Final Test (Internal) having 40 Marks

SEMESTER – II

Syllabus and Course Plan

Cou	rse No.	Course Name	L-T-P	Credits	Ye: Intro	ar of duction
10E	EE6402	Digital Protection of Power System	3-1-0	4	20)18
 To gen To To pha 	understand erator arma understand understand sor estimat	Course I different protection schemes ature winding protection. the role of Current and Voltage I application of DSP fundame ion.	Objectives and applic transforme entals and a	eations to trans ors in power sys application to	former, b tem protec current ar	ousbar and ction. nd voltage
Basic transf Protec phenc	ideas of former and ction of to omena	relay protection- Nature and potential transformer- Static re ransformers- Bus zone prote	s causes of elays- Digita ection - Ca	faults-types o al relay- Protec suses of over	f faults - tion of ge voltages-	- Current enerators- lightning
		Expecte	ed Outcome	•		
Afte imp wel	er studying lement var l as the reso	g this subject, students are all ious relaying functions It show earch community.	ble to Desi uld be also	gn various ele useful to prac	ectronic citicing eng	ircuits to ineers as
		Referer	nces			
1. Ap 2. Mc 3. Mi 4. Ser 5. Sor 6. Ele 7.	 T. S.MadhavRao, "Power System Protection Static Relays With Microprocessor Applications", Tata McGraw Hill Publication, 1994 Badri Ram and DN Vishwakarma, "Power system protection and Switchgear", Tata Mc Graw Hill, NewDelhi, 2003. L.P.Singh, " Digital protection, Protective Relaying from Electromechanical to Microprocessor", John Wiley & Sons, 1995 A. T. John and A. K. Salman- "Digital Protection for Power Systems", IEE Power Series-15, Peter Peregrines Ltd., UK, 1997 Russeil C., Mason, "The Art and Science of Protective Relaying", John Wiley & Sons, 2002 Power System Protection Vol. I, II , III&IV, The Institution Of Electrical Engineers, Electricity Association Services Ltd., 1995 					
		COURS	SE PLAN			
Module	Module Contents Find -semester					% of Marks in End -semester
I	∑ Image: Im					
II	Static rel Amplitud	lays- Solid state devices us e comparator and phase con	ed in stati nparator cla	c protection	- 8	15

	components- Static Overcurrent relays: Non-directional		
	,Directional - Synthesis of Mho relay, Reactance relay, Impedance		
	relay and Quadrilateral Distance relay using Static comparators, pilot		
	relaying schemes-carrier current protection		
	FIRST INTERNAL EXAM		
	Digital relay-Basic components of digital relay- DSP fundamentals	4	
	like aliasing, sampling theorem		
III	Discrete Fourier Transform and application to current and voltage		15
	.phasor estimation -sinusoidal wave based algorithms -least square	5	
	based methods		
	Fundamentals of travelling wave based protection -Bergeran's		
	equations-Discriminant functions	5	15
IV	Principles of internal fault detection –ultra high speed polarity		15
	comparison scheme-ultra high speed wave differential scheme	5	
	SECOND INTERNAL EXAM		
	Protection of generators- stator and rotor protection-Transformer.		
	protection-differential protection-protection against magnetizing	5	
V	inrush current-earth fault protection		20
	Bus zone protection-differential current protection-high		
	impedance relay scheme-frame leakage protection	4	
	Causes of over voltages-lightning phenomena-over voltages due to		
	lightning-protection of transmission lines against direct lightning	5	
	strokes-protection of substations		20
VI	Insulation coordination-basic impulse level- Protection of Long and		
	short lines – Protection based on Artificial Intelligence SCADA	5	
	END SEMESTER EXAM		

END SEMESTER EXAM

Course No.	Course Name	L-T-P	Credits	Year of Introduction	
10EE6404	Computer Aided Power System Analysis	3-0-0	3	2018	
	Course (Objectives			
1. To introduce	computer applications in anal	lysis of power	r system		
2. To understand	the solution methods and te	chniques invo	olved in powe	er system studies	
3. To understand	I the state space analysis and	contingency	analysis of di	fferent power system	
	Syll	labus			
Different load flo	w studies-harmonics load flo	ow-incorporat	tion of FACT	S devices in load	
flow studies-Eler	nentary graph theory-Short c	circuit studies	-State estima	tion-Contingency	
analysis-continge	ncy analysis by DC Model.				
Expected Outcome					
Upon successful completion of this course, students will have a better understanding of the					
merits and deme	rits of critical analytical so	lution metho	ds which are	e the basis for valid	

tech	techniques in solving power system problems					
	References					
1. 0	G. L. Kusic, "Computer Aided Power System Analysis", Prentice Hall.					
2.	HadiSaadat, "Power System Analysis", McGraw-Hill Publishers.					
3.	J. Arriliga and N. R. Watson, "Computer Modelling of Electrical	Power S	ystems",			
V	Viley Publications.					
4.	John J. Grainger, William D. Stevenson, Jr., Power System Analysis	s, Tata M	IcGraw-			
H	Iill Series in Electrical and Computer Engineering.					
5.	H. E. Brown, Large Networks by Matrix Methods, John Wiley & So	ons.				
	COURSE PLAN					
		ed	er in			
		ott	ks j este ion			
0	Contents	All	[ar] eme			
Jul		ILS '	f N -se mii			
Ioc		Iou	6 o Ind			
4		Ľ.	КШЦ			
	Load Flow Studies: Overview of Gauss, Gauss- Seidel and Newton					
_	Raphson Methods, Decoupled Load Flow, Fast Decoupled Load	-				
Ι	Flow	3	15			
	DC load flow, Three-phase Load Flow and Harmonic Load flow -					
	Sparsity techniques, Triangular factorization and Optimal ordering	4				
	Incorporation of FACTS devices in Load Flow: Static Tap					
Π	Changing- Phase Shifting (PS), Static VAR Compensator	6	15			
	(SVC), Thyristor Controlled Series Compensator (TCSC) and					
	Unified Power Flow Controller (UPFC).					
	FIRST INTERNAL EXAM	2				
	Elementary linear graph theory –Incidence and network matrices.	3				
	Development of network matrices from Graph theoretic approach,		15			
	matrix Building algorithm for Bus impedance matrix-	4				
111	Modification of ZBUS due to changes in primitive network	4				
TX 7	Short Circuit studies – Types of Faults – Short circuit study of a	4				
1 V	after foult		15			
	Three phase short singuit three phase to ground double line to	1	15			
	ground line to line and single line to ground foult	4				
	ground, fine to fine and single fine to ground fault					
	SECOND INTERNAL EXAM	4				
	state estimation – least square and weighted least square estimation methods for linear and non linear systems	4				
V	Static state estimation of power systems injections only and line		20			
v	state state estimation of power systems- injections only and line	3	20			
	and suppression of had data	5				
	Contingency Analysis adding and removing multiple lines	1	20			
	Analysis of single and multiple contingencies	+	20			
VI	Contingency Analysis by DC model System reduction for	3				
	contingency and fault studies.	5				
	END SEMESTER FXAM					

Course	e No.	Course Name	L-T-P	Credits	Year of Introduction	
10EE6	5306	Power System Operation and Control	3-0-0	3	2018	
Ontimi	zation T	Course Prerequisi	tes			
Optimi		Course Objective	s 25			
To under	stand th	e economics of power system operatio	n with therr	nal and hyd	ro units	
To realize	e the rec	quirements and methods of real and rea Syllabus	active power	control in	power system	
Economie Automati Control -	c opera ic Gene Static a	tion- optimal load flow- Hydro ther ration Control - AGC with optimal d and dynamic response stability compen	mal coordir ispatch- Re isators	ation- unit active Powe	commitment - er and Voltage	
		Expected Outcom	es			
Upon cor	npletior	n of this course, students will be able t	0	- 14 -		
- Develop	o genera control a	and compensations schemes on a powe	and nydro u r system	nits		
		Text books	1 0 9 0 00 111			
1.Allen J	. Wood	d and Bruce Wollenberg, Power Ger	neration Op	eration and	l Control, 2nd	
2. P Kund	onn wi dur. Pov	ver system Stability and Control. McG	raw-Hill. In	c1994.		
3. PSR	Murthy	, Operation and Control of Electri	c Power s	ystems, BS	5 publications,	
Hyderaba	ad, 2005		T11 T 114	2002		
4. Hadi S	aadat, F	Ower System Analysis, Tata McGra-F	Hill, Edition	, 2002.		
		Course plan			Somostor	
Module		Content		Hours	Exam Marks (%)	
I	Econo Therm consid Optim Solutio LP me	mic operation: The economic dispat hal system dispatching with net lered-Loss Formula calculations. al Load Flow: Problem statement and on of OPF, Gradient method-Newton's othod.	tch problen work losse formulations s method an	n- es n. d	15	
II	II Hydro thermal coordination: Hydroelectric Plant Models- Scheduling Problems-short term hydro thermal scheduling problem-gradient approach-Pumped storage 6 15 hydro plants- Hydro scheduling linear programming. 0 0 0 0					
	TT 's C	First Internal Examin	nation	•.		
III	Unit C comm approa	commitment: Constraints in unit commitment solution methods-Priority list ach.	mitment-Un methods-D	P 8	15	
IV	Autom loops ,Goven	natic Generation Control: Basic gene -Models for generator, Load, Pr rnor-Block diagram models for single a system-Tie line bias control .AGC	erator contro- ime moves area and Tw with optime	ol rs 6 al	15	

	dispatch-Introductory modern control application -Pole				
	placement design and optimal control design.				
	Second Internal Examination				
V	Reactive Power and Voltage Control: Impedance and reactive power-System voltage and reactive power- Reactive power generation by synchronous machines- Effect of excitation control-Voltage regulation and power transfer-Exciter and voltage regulator-Block schematics of excitation control AVR for alternator	8	20		
VI	Static and dynamic response stability compensators- Stability compensation power system stabiliser(PSS)- Methods of system voltage control-Tap changing transformer-Shunt reactors-Shunt capacitors-Series capacitors-Synchronous condensers-Static VAR Systems- FACTS devices(introduction only)	6	20		
		42	100		
End Semester Examination					

Elective II

Course No.	Course Name	L-T-P	Credits	Year of Introduction				
10EE6414	Static VAR Controllers and Harmonic Filtering	3-0-0	3	2018				
	Course Objectives							
To familiarize the	different control schemes fo	r Static VAR	Compensato	rs to mitigate power				
quality problems	in Power System							
	Syll	abus						
Review of tran	nsmission lines, Steady-Sta	te Reactive	Power Cor	ntrol in Electric				
Transmission S	Systems, Converters for	Static Com	pensation,	The Static Var				
Compensator (S	VC); TCR, FC-TCR and T	SC-TCR va	riants: STAT	COMs and their				
control, Sub-Syr	chronous Resonance and da	mping, Passi	ve Harmonic	Filtering, Hybrid				
Filtering using S	hunt Active Filters, The Dyn	amic Voltage	e Restorer (D'	VR)				
	Expected	Outcome	_					
Upon successful c	completion of this course, stu	dents will ha	ve a better un	derstanding of the				
merits and demeri	its of critical analytical soluti	on methods v	which are the	basis for valid				
techniques in solv	ving power system problems							
	Refe	rences						
1. G. L. Kusic, "	Computer Aided Power Syste	em Analysis"	, Prentice Ha	11.				
2. Hadi Saadat, "	'Power System Analysis", M	cGraw-Hill P	ublishers.					
3. J. Arriliga and	3. J. Arriliga and N. R. Watson, "Computer Modelling of Electrical Power							
Systems", Wiley Publications.								
4. John J. Graing Series in Elect	ger, William D. Stevenson, J rical and Computer Engineer	r., Power Syst ring.	tem Analysis.	, Tata McGraw-Hill				
5. H. E. Brown, Large Networks by Matrix Methods, John Wiley & Sons.								

	COURSE PLAN				
Module	Contents	Hours Allotted	% of Marks in End -semester		
1	Load Flow Studies: Overview of Gauss, Gauss- Seidel and Newton Raphson Methods, Decoupled Load Flow, Fast Decoupled Load Flow DC load flow, Three-phase Load Flow and Harmonic Load flow - Sparsity techniques, Triangular factorization and Optimal	3	15		
	ordering	4			
п	Incorporation of FACTS devices in Load Flow: Static Tap Changing- Phase Shifting (PS), Static VAR Compensator (SVC), Thyristor Controlled Series Compensator (TCSC) and Unified Power Flow Controller (UPFC).	6	15		
	FIRST INTERNAL EXAM				
	Elementary linear graph theory –Incidence and network matrices.	3			
III	Development of network matrices from Graph theoretic approach, matrix Building algorithm for Bus impedance matrix- Modification of ZBUS due to changes in primitive network	4	15		
IV	Short Circuit studies – Types of Faults – Short circuit study of a large power system Algorithm for calculating system conditions after fault	4	15		
	ground line to line and single line to ground fault	4			
	SECOND INTERNAL EXAM	•			
	State estimation – least square and weighted least square estimation methods for linear and non-linear systems	4			
V	Static state estimation of power systems- injections only and line only algorithms, Treatment of bad data – detection, identification and suppression of bad data	3	20		
	Contingency Analysis- adding and removing multiple lines, Analysis of single and multiple contingencies	4			
VI	Contingency Analysis by DC model, System reduction for contingency and fault studies.	3	20		
	END SEMESTER EXAM				

Co	ourse No.	Course Name	L-T-P	Credits	Yea Introd	r of uction
1()EE6416	Sustainable And Translational Engineering	3-0-0	3	20	18
The 1. 2.	e purpose of t To bring in t To have a aspects invol	Course C his course is:- o focus the basics aspects of general understanding on g lved in Green Technology.	Dbjectives sustainable de lobal enviror	evelopment. nmental issue	es and the	different
His Env per issu Car mat Ecc	Syllabus History and emergence of the concept of Sustainable Development; Economic dimensions, Environmental dimension; Framework for sustainability, assessment sustainable performance; Industrialization, Globalization and Environment; Global environmental issues; Waste land reclamation, Resource degradation, carbon credits and Carbon trading – Carbon footprint; Energy: Conventional and renewable sources, Green buildings, green materials, Technology and sustainable development, Sustainable urbanization, Industrial					
Upo 1. 2. 3.	on successful Understand t To have an i Understand t	Expected completion of this course the the concept of sustainable dev nsight in to global environme the different aspects of green	Dutcome e student will velopment ental issues Technology.	be able to		
1. K N 2. S. K 3. K L L 4. S. pu 5. Tv Sc	 References 1. Kurian Joseph & R. Nagendran' Essential Environmental studies'. Pearson education, New Delhi, 2004 2. S.C Bhatia, Environmental Pollution and Control in Chemical Process Industries, Khanna Publishers, Delhi, 2005. 3. Kirkby, J.O' Keefe, P. and Timberlake, Sustainable Development, Earthscan Publication, London, 1996. Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publication, London, 1998. 4. S.S Purohit ,Green Technology-An approach for sustainable environment, Agrobios publication, India, 2008. 5. Twidell, J. W. and Weir, A. D., Renewable Energy Resources, English Language Book 					
		COURS	E PLAN			
Module		Contents			Hours Allotted	% of Marks in End -semester
Ι	History an Developmen dimensions-	d emergence of the co nt – Framework of S environmental dimension	ncept of Sustainability,	Sustainable economic	7	15
Π	Framework performance	for achieving sustainability, e- Industrialization – Globali	assessment of zation and En	f sustainable vironment	7	15
	Global env	FIRST INTE vironmental issues: - deser	KNAL EXAN rtification –	yı greenhouse		15

III	gases-greenhouse effect, ozone layer depletion- global warming -	7	
	acid rain – deforestation.		
	Waste land reclamation-Resource degradation, carbon credits and		
IV	Carbon trading-International summits- conventions-agreements-	7	15
	trans boundary issues- Carbon footprint		
	SECOND INTERNAL EXAM		
	Energy sources: Basic concepts-Conventional and non-		
V	conventional, solar energy, Fuel cells, Wind energy, Small	7	20
	hydro plants, bio-fuels, Energy derived from oceans,		
	Geothermal energy.		
	Green buildings, Sustainable cities, Sustainable Urbanisation		
VI	Sustainable transport, Green Engineering, Industrial Ecology,		
	Industrial symbiosis.	7	20
	END SEMESTER EXAM		

Course No.	Course Name	L-T-P	Credits	Year of Introduction
10EE6116	Power Conversion in Renewable Energy Systems	3-0-0	3	2018
	Course Prerequi	isites	• • • • • •	
Basic knowle	dge in Electrical power systems and P	ower electro	onics at U	G level.
1. To give an electronic d	n idea about the renewable energy levices and converters in renewable en	sources an ergy system	d the app is.	olication of power
	Syllabus			
solar photo v	oltaic systems, bioenergy, wind ene	ergy, fuel	cells, ocea	an energy, MHD,
Geothermal and	d Small hydro systems.			
	Expected Outco	mes		
Students who	complete this course will have an	ability to	understand	the fundamental
concepts of ger	nerating electrical energy from renewal	ble energy s	ystems.	
	References:			
1. D P Kothar 1,2011.	i and Nagrath, "Modern Power Syst	tem Analys	is", Mcgra	aw Hill, , Chapter
2. Thomas Ac	kerman, "Wind power in power sys	tems", John	n Wiley&	Sons, Chapter 4,
London, 200)5			_
3. M G Simoes and F A Farret, "Alternate energy systems," CRC Press, Chapter7, London, 2008.				
4. Domkundvar, "Solar Energy Resources", Dhanpatrai& Sons, New Delhi.				
5. J P Lyons and V Vlatkovic, "power electronics and alternative energy generation", in proc IEEE power electronics specialist conference, vol.1, no 1, pp.16-21, Aachen 2004.				
6. P F Rebeiro, advanced pc	, B K Jhonson, M L Crow, A Arsoy an over application", in proc IEEE conf. v	d Y Liu, "E ol.89, no 12	nergy Stor 2, Dec. 200	age systems for 01.

	Course plan				
Module	Content	Hou rs	Semester Exam Marks (%)		
I	Introduction of renewable energy sources and potential- Solar energy needs and its utilization-Solar thermo mechanical systems-direct conversion to electricity- grid interactive PV systems-Isolated PV systems- requirement for maximum power tracking (MPPT) - dc to dc converter topologies for MPPT- control algorithms for MPPT	8	15		
П	Introduction to biomass -Resource potential –technology and applications - Biomass gasifiersElectrical energy conversion methods-biomass conversion process. Biogas plants- Technology and status- Biogas generation- types of biogas plant-community biogas plants.	6	15		
	First Internal Examination				
III	Wind energy – Resonance potential –Vertical axis and horizontal axis wind turbines –Gilberts limit- Power coefficient – wind farms –Power plants –Generators for WECS- Induction Generators- Solid state converters and control	8	15		
IV	Fuel cells: Introduction – working –efficiency – classification –performance characteristics – dc- dc converters and control	6	15		
	Second Internal Examination				
V	Geothermal Energy- Resources of Geothermal –vapour dominant system-liquid dominant binary cycle. Total flow of geothermal power unit- energy conversion systems. MHD : Principle –simplified analysis of MHD- factors affecting the efficiency of MHD-types-present status of MHD generation.	8	20		
VI	Ocean energy conversion: OTEC –Principle –cycle, operation of OTEC systems .Location of plants –types – technology and applications- Tidal and wave energy. Small hydropower generation-turbines and generators- grid tied systems- stand alone systems- induction generators- Electronic load controllers.	6	20		
	TOTAL	42	100		
	End Semester Examination				

Course No	. Course Name	L-T-P	Credits	Year of Introduction	
10EE6124	High Voltage DC and AC Transmission	3-0-0	3	2018	
Eurodomonto	Prerequisite:	: 			
Fundamenta	Fundamental Knowledge about the power now in transmission line.				
To understa	nd the concept planning of DC power tr	ves ansmission a	and compari	son with AC	
Power trans	mission	<i>unsmussion</i> c	ina compani	<i>Jon will</i> 110	
To analyze I	HVDC converters				
To study abo	out compounding and regulation				
To analyze l	narmonics and design of filters				
To learn ab	out HVDC cables and simulation tools				
	Syllabus				
INTRODUC	CTION - Introduction of DC Power tra	insmission te	chnology –	Description of	
DC transm	ission system – Planning for $HVDC$	2 transmissi	on – Analys	is of HVDC	
Converters-	Choice of converter configuration –Con	iverter bridge	e characteris	tics – Detailed	
Transmissio	n characteristics with the rectifier and in	Nerter comp	-Inverter c	ommunication	
link – Tran	sformer tan changing Harmonics and f	filters and Si	imulation –	Generation of	
harmonics -	- Design of AC filters and DC filters	-Introductio	on to system	simulation $-$	
Modeling of	F HVDC systems for digital dynamic sim	ulation.	in to system	Simulation	
0	Course Outcor	ne			
After succes	sful completion of this course the studer	nts able to un	derstand pri	ncipals and	
technology	of DC transmission, know about HVDC	converter an	d control of	power flow,	
model HVD	C lines and converters & the effects of h	armonic in I	DC lines		
D 0					
References		C , , 117.	1 5 4	T ' '/ 1 NT	
I. Padiya	1000 First adition	System [*] , W1	ley Eastern	Limited, New	
2 Edwar	d Wilson Kimbark "Direct Current Tra	nsmission"	Vol I Wile	v Interscience	
2. Luwar New Y	ork London Sydney 1971	, nsmission	v 01. 1, vv 11c	y interscience,	
3. Colin	Adamson and Hingorani N G. "H	ligh Voltage	Direct C	urrent Power	
Transi	nission", Garraway Limited, London, 190	60.			
4. Arrilla	ga, J., "High Voltage Direct Current Tr	ransmission"	, Peter Preg	rinus, London,	
1983.			-		
5. Rakos	h Das Begamudre, "Extra High Voltage	e AC Transm	ission Engi	<i>ieering</i> ", New	
Age Ir	ternational (P) Ltd., New Delhi, 1990.				
		N 7			
	COURSE PLA	N		C	
				Sem. Exam	
Module	Contents		Hours	Marks	
				(%)	
	INTRODUCTION - Introduction of	DC Power			
т	transmission technology – Comparison	of AC and	(15	
1	DC transmission – Application of DC tr	ransmission	0	15	
	- Description of DC transmission system	n			
Π	Planning for HVDC transmission – Mo	dern trends	6	15	
in DC transmission. ANALYSIS OF HVDC 0 15					

	CONVERTERS - Pulse number - Choice of			
	converter configuration			
	FIRST INTERNAL EXAM			
	Simplified analysis of Graetz circuit – Converter			
III	bridge characteristics – Characteristics of a twelve	6	15	
	pulse converter – Detailed analysis of converters.			
	COMPOUNDING AND REGULATIONS -			
	General – Required regulation – Inverter			
IV/	compounding – Uncompounded inverter –	6	15	
1 V	Rectifier compounding – Transmission	0	15	
	characteristics with the rectifier and inverter			
	compounding –			
	SECOND INTERNAL EXAM			
	Communication link – Current regulation from the			
	inverter side – Transformer tap changing.			
V	HARMONICS AND FILTERS and	6	20	
	SIMULATION - Introduction - Generation of			
	harmonics – Design of AC filters and DC filters			
	Interference with neighbouring communication			
	lines. Introduction to system simulation –			
VI	Philosophy and tools – HVDC system simulation –	6	20	
	Modeling of HVDC systems for digital dynamic			
	simulation.			
End Semester Examination				

Elective III

Course No.	Course Name	L-T-P	Credits	Year of
	~ · ~ • •			Introduction
	Smart Grid			
10EE6422	Technologies and			
	Applications	3-0-0	3	2018
	Cour	se Objectives	5	
Objective of the o	course is to develop a concep	tual basis for	Smart Grid a	nd to equip the
students with a th	orough understanding of var	ious commun	ication techn	ologies and power
management issu	es with smart grid			
	Syll	labus		
Evolution of Ele	ctric Grid, Smart meters, Sm	art Substatior	ns, Substatior	n Automation, Smart
energy efficient	end use devices-Smart distri	buted energy	resources- E	Energy management-
Role of technol	ogy in demand response- l	Demand Side	Managemer	nt; Load Frequency
Control (LFC) ir	Micro Grid System, Advand	ced metering]	Infrastructure	
Expected Outcome				
Upon successful completion of this course, students will be able to:				
1. Understar	d features and scope of smar	t grid technol	ogy.	
2. Assess the	e role of automation in substa	ation.		

3. Understand operation and importance of demand side management, voltage and frequency control in smart micro grid

References

- 1. A Stuart Borlase, "Smart Grids, Infrastructure, Technology and Solutions", CRC Press, 2013
- 2. Ali Keyhani, Mohammad N. Marwali, Min Dai "Integration of Green and Renewable Energy in Electric Power Systems", Wiley
- 3. Clark W. Gellings, "The Smart Grid: Enabling Energy Efficiency and Demand Response", CRC Press
- 4. James Momoh, "Smart Grid: Fundamentals of Design and Analysis", Wiley, IEEE Press, 2012.
- 5. A.G. Phadke and J.S. Thorp, "Synchronized Phasor Measurements and their Applications", Springer Edition, 2010.
- 6. Iqbal Hussein, "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, 2003.
- 7. JanakaEkanayake, Nick Jenkins, KithsiriLiyanage, Jianzhong Wu, Akihiko Yokoyama, "Smart Grid: Technology and Applications", Wiley 2012.
- 8. Gautam Shroff, Enterprise Cloud Computing Technology Architecture Applications [ISBN: 978-0521137355]

	COURSE PLAN				
Module	Contents	Hours Allotted	% of Marks in End -semester		
Ι	 Evolution of Electric Grid, Concept, Definitions and Need for Smart Grid, Smart grid drivers, functions, opportunities, challenges and benefits Present development & International policies in Smart Grid. Indian Smart Grid. Components and Architecture of Smart Grid Design 	3	15		
п	Introduction to Smart Meters, Real Time Pricing- Models, Smart Appliances, Automatic Meter Reading(AMR), Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation	6	15		
	FIRST INTERNAL EXAM				
ш	Smart Substations, Substation Automation, Introduction to IEC 61850, Feeder Automation. Geographic Information System(GIS) Intelligent Electronic Devices(IED) & their application for monitoring & protection Wide Area Measurement	3	15		
111	System(WAMS), Phase Measurement Unit(PMU)				
	Smart energy efficient end use devices-Smart distributed energy resources- Energy management-Role of technology in demand response- Demand Side Management	4	15		
IV	Load Curves-Load Shaping Objectives-Methodologies-Barriers. Peak load saving-Constraints-Problem formulation- Case study	4			
	SECOND INTERNAL EXAM	1			
	Load Frequency Control (LFC) in Micro Grid System – Voltage	4			

V	Control in Micro Grid System		20		
	Reactive Power Control in Smart Grid.	3			
VI	Advanced Metering Infrastructure (AMI), Home Area Network (HAN), Bluetooth, Zig-Bee, GPS, Wi-Fi, Wi-Max based				
	communication	4	20		
	Cloud computing in smart grid. Private, public and Hybrid cloud.				
	Cloud architecture of smart grid	3			
	END SEMESTER EXAM				

Course No.	Course Name	L-T-P	Credits	Year of Introduction
10EE6424	Power System Stability and Reliability	3-0-0	3	2018

Course Objectives

To equip the engineers for operating power systems more effectively and reliably utilizing the resources in an optimal manner.

Syllabus

Concept of Power system stability; Transient stability analysis; Voltage Stability Analysis; Static Analysis; Determination of Shortest distance to instability; The continuation load flow analysis-Important voltage stability indices-Prevention of Voltage Collapse. Concept of reliability, System reliability, Methods of system reliability, fault free analysis. Generating capacity reserve evaluation; generation expansion planning, uncertainties in generating unit Failure rates and in load forecasts. Operating reserve evaluation; the security function approach. Interconnected systems.

Expected Outcome

Upon completion of this course, students will be able to

- 1. Analyse transient stability and voltage stability
- 2. Operate power systems more effectively and reliably.

References

- 1. K. R. Padiyar, 'Power System Dynamics', 2nd Edition, B.S. Publishers, 2003
- 2. P. Kundur, 'Power System Stability and Control', McGraw-Hill Inc., 1994
- 3. T. Van Cutsem, C. Vournas, 'Voltage Stability of Electric Power System', Kluwer Academic Publishers, 1998
- 4. J. J. Endrenyi, 'Reliability Modelling in Electric Power Systems', John Wiley & Sons
- 1. Singh C., Billinton R. 'System Reliability Modelling and Evaluation', Hutchinston.

COURSE PLAN

Module	Contents	Hours Allotted	% of Marks in End -semester
I	Concept of Power system stability-Types of stability-Transient stability analysis: An Elementary View of Transient Stability- Structure of a complete power system model for transient stability analysis-Transient Stability Enhancement	7	15
п	Voltage Stability Analysis-Definition and Criteria-Mechanism of Voltage Collapse-Static Analysis: V-Q sensitivity analysis, Q-V modal analysis-Determination of Shortest distance to instability-The continuation load flow analysis-Important voltage stability indices-Prevention of Voltage Collapse	6	15
	FIRST INTERNAL EXAM		
ш	Concept of reliability, non-repairable components, hazard models, components with preventive maintenance, ideal repair and preventive maintenance, repairable components, normal repair and preventive maintenance.	7	15
IV	System reliability, monotonic structures, reliability of series- parallel structures, the V out of 'rf configuration, the decomposition methods, minimal tie and cut method, state space method of system representation, system of two independent components, two components with dependent failures, combining states, non-exponential repair times failure effects analysis, State enumeration method, application to non- repairable systems.	4	15
	Carlo simulation, planning for reliability, outage definitions, construction of reliability models.	4	
	SECOND INTERNAL EXAM		
V	Generating capacity reserve evaluation, the generation model, the probability of capacity deficiency, the frequency and duration method, comparison of the reliability indices, generation expansion planning, uncertainties in generating unit failure rates and in load forecasts. Operating reserve evaluation, state space representation of generating units, rapid start and hot-reserve units, the security function approach.	7	20
VI	Interconnected systems, two connected systems with independent loads, two connected system with correlated loads, more than two systems interconnected.	7	20

Course N	o. Course Name	L-T-P	Credits	Year of Introduction		
10EE612	Energy Management	3 - 0 - 0	3	2018		
Basic kı	Course Prerequisites Basic knowledge of Electrical & Mechanical Engineering at UG Level.					
The couprinciple	Course Ob urse is designed to provide students as of energy management and apply the	jectives knowledge and is to practical sys	d ability to stems.	understand the		
Importanc Pumps an Refrigerat Water He	Syllab e of energy management. Energy audi l Fans-Reactive Power management-L ion & air conditioning systems-Boiler aters- solar PV systems.	ting-Electric mot ighting- Compre -Cogeneration- I	cors- Variable essed Air Syst Electric water	speed drives; ems, heating-Solar		
	Expected O	utcomes				
The stu	dents are expected to apply the ge	neral principles	of energy r	nanagement to		
Text bool	re					
 Guide Book for National Certification Examination for Energy Managers & Energy Auditors – Bureau of Energy Efficiency, Ministry of Power, Govt of India. Handbook on Energy Audit and Environment Management , Y P Abbi and Shashank Jain, TERI, 2006 Utilization, Generation & Conservation of Electrical Energy, Sunil S.Rao, Khanna publishers, 2007. Anthony J. Pansini, Kenneth D. Smalling, .Guide to Electric Load Management., Pennwell Pub; (1998) Partab H., 'Art and Science of Utilisation of Electrical Energy', Dhanpat Rai and Sons, New Delhi. 1975 Tripathy S.C.,'Electric Energy Utilization And Conservation', Tata McGraw Hill, 1991 L.C.Witte, P.S.Schmidt, D.R.Brown , Industrial Energy Management and Utilisation, Hemisphere Publ, Washington, 1988. 						
	Course	nlan				
Module	Content		Hours	Semester Exam Marks (%)		
Importance of energy management. Energy auditing: methodology System approach and End use approach to efficient use of Electricity; Electricity tariff types; Types and objectives-audit instruments- specific energy analysis-Minimum energy paths- consumption models-Case study. Demand side management.1000000000000000000000000000000000000						
II	IIElectric motors- Energy efficient controls and starting -Motor Efficiency and Load Analysis- Energy efficient motors-Case study; Load Matching and selection of motors-Variable speed drives.615					
	First Internal F	Examination				
III	Reactive Power management-Capacit	or Sizing-	8	15		

	Degree of Compensation-Capacitor losses-			
	Location-Placement-Maintenance, case study. Peak			
	Demand controls- Methodologies- Types of			
	Industrial loads-Optimal Load scheduling-case			
	study.			
	ECO assessment and Economic methods- Simple			
	payback period- time value of money-Net Present			
137	value- Internal rate of return-	6	15	
1 V	Lighting- Energy efficient light sources-Energy	0	15	
	conservation in Lighting Schemes- Electronic	;		
	ballast-Power quality issues-Luminaries, case study			
	Second Internal Examination			
	Energy conservation in Pumps - Optimal selection			
	and sizing -Case study- Fans (flow control),			
	Refrigeration & air conditioning systems.			
X 7	Boiler -efficiency testing, excess air control, Steam	0	20	
v	distribution & use- steam traps, condensate	8	20	
	recovery, flash steam utilization			
	Cogeneration -Types and Schemes-Optimal			
	operation of cogeneration plants-case study;			
	Power Consumption in Compressors, Energy			
VI	conservation measures. water heating-Gysers-Solar	6	20	
	Water Heaters- solar PV systems.			
		42	100	
End Semester Examination				

Course No.	Course Name	L-T-P	Credits	Year of Introduction		
10EE6132	Distributed Generation and Micro Grid	3-0-0	3	2018		
	Course Prer	equisites				
Basic knowled	ge in Electrical power systems a	nd Power el	lectronics at U	G level.		
	Course Objectives					
2. To give an id	lea about the renewable energy s	ources and t	the integration	with grid.		
	Syllab	us				
Need for Distr	ibuted generation, Grid integra	ation of D	Gs –Energy s	storage elements-		
Technical impac	ets of DGs –Impact of DGs upor	n transient a	and dynamic st	ability of existing		
distribution syste	ems.		·	• •		
Economic and c	Economic and control aspects of DGs –Power quality issues-Reliability of DG based systems					
- Steady-state and Dynamic analysis-Introduction to micro-grids – Micro grids with power						
electronic interfa	electronic interfacing units.					
	Expected O	utcomes				

Students who complete this course will have an ability to understand the fundamental concepts of generating electrical energy from renewable energy systems and connecting with electrical grid.

References:

- 1. H. Lee Willis, Walter G. Scott ,'Distributed Power Generation Planning and Evaluation', Marcel Decker Press, 2000.
- 2. M.GodoySimoes, Felix A.Farret, 'Renewable Energy Systems Design and Analysis with Induction Generators', CRC press.
- 3. Robert Lasseter, Paolo Piagi, ' Micro-grid: A Conceptual Solution', PESC 2004, June 2004.
- 4. F. Katiraei, M.R. Iravani, 'Transients of a Micro-Grid System with Multiple Distributed Energy Resources', International Conference on Power Systems Transients (IPST'05) in Montreal, Canada on June 19-23, 2005.

Course plan						
Module	Content	Hours	Semester Exam Marks (%)			
I	Need for Distributed generation, renewable sources in distributed generation, current scenario in Distributed Generation, Planning of DGs – Siting and sizing of DGs – optimal placement of DG sources in distribution systems.	8	15			
II	Grid integration of DGs – Different types of interfaces - Inverter based DGs and rotating machine based interfaces - Aggregation of multiple DG units. Energy storage elements: Batteries, ultra-capacitors, flywheels	6	15			
	First Internal Examination					
ш	Technical impacts of DGs – Transmission systems, Distribution systems, De-regulation –Impact of DGs upon protective relaying – Impact of DGs upon transient and dynamic stability of existing distribution systems.	8	15			
IV	Economic and control aspects of DGs –Market facts, issues and challenges - Limitations of DGs. Voltage control techniques, Reactive power control, Harmonics, Power quality issues. Reliability of DG based systems – Steady-state and Dynamic analysis	6	15			
	Second Internal Examination		_			
V	Introduction to micro-grids – Types of micro-grids – autonomous and non-autonomous grids – Sizing of micro-grids- modeling& analysis- Micro-grids with multiple DGs.	8	20			
VI	Micro grids with power electronic interfacing units. Transients in micro-grids - Protection of micro-grids – Case studies.	6	20			
	TOTAL	42	100			
	End Semester Examination					

Course No.	Course Name	L-T-P	Credits	Year of Introduction
10EE6408	Mini Project	0-0-4	2	2018

Course Prerequisites

(1) The habit of reading technical magazines, conference proceedings and journals;

(2) Skills in hardware/software implementation techniques earned through UG studies;

(3) The course Seminar-1 in the first semester..

Course Objectives

(1) To support the problem based learning approach and to enhance the reading habit among students;

(2) To enhance the skills regarding the implementation aspects of small hardware/software projects..

Guidelines

Each student has to do a mini project related to the branch of specialization under the guidance of a faculty member. It has to be approved by a committee constituted by the institute concerned. It is recommended that the same faculty member may serve as his/her Project Supervisor during 3rd& 4th semesters. The mini project is conceptualized in such a way that, some the outcomes of the work can be utilized in the selection of the thesis. Hence on completion of mini project the student can suggest possible list of their thesis topic in the second semester itself. The implementation of the mini project can be software and/or hardware based one. Mini project is envisaged as a way for implementing *problem based learning*. Problems of socially relevance and/or problems identified by the institute/ research organizations/ industry/ state should be given high priority. In such interdisciplinary and inter institutional projects, a student can have coguide(s) from other department/ institute/ research organizations/ industry. The university encourages *interdisciplinary projects* and *problem based learning strategy*. The references cited for the mini project shall be *authentic*.

Expected Outcomes

The students are expected to :

Develop skills regarding enumerating and selecting hot research problems

□ Develop skills for subsequent design and analysis

□ Implement the hardware/software building blocks of the system

□ Be motivated and successful in the selection of the topic for the main project

Communicate in an effective way and to write technical reports

□ Apply various tools for the analysis of the results and performance of the work.

References

1. J.W. Bames, *Statistical Analysis for Engineers and Scientists*, McGraw Hill, New York.

2. Schank Fr., Theories of Engineering Experiments, Tata McGraw Hill Publication.

3. Douglas C Montgomery, Design and analysis of experiments, Wiley International

4. Leedy P D, *Practical Research : Planning and Design*, 4th Edition, N W MacMillan Publishing Co

Course plan			
Item	Description	Time	
1	Abstract Submission	2 Weeks	
2	Allotment of Topic	1 Week	
3	Preliminary Presentation Sessions	1 Week	
4	Implementation Phase	9 Weeks	
5	Final Presentation-cum Demonstration	1 Weeks	

1. Preliminary Presentation evaluated by the Progress Evaluation Committee (PEC) : 20 Marks

- 2. Progress Evaluation (Guide and/or Co-guide): 30 Marks
- 3. Final Presentation-cum-demonstration evaluated by the PEC: 30 Marks
- 4. Report (Mandatory): 20 Marks

Course No.	Course Name	L-T-P	Credits	Year of Introduction	
10EE6412	Power System Lab II	0-0-2	1	2018	
	Cou	rse Objective	s		
Ability to conduct advanced experiments in power systems					
1 Transiant stak	Syll	abus			
2 Short circuit	analysis symmetrical faults				
3 Short circuit	analysis- symmetrical faults	te			
4 Simulation of	AVR and AGC with Tie lin	ne control			
5 Voltage instal	bility studies	e control			
6. Relay Coordi	nation				
7. Simulation of	HVDC systems				
8. Simulation of	SVC, STATCOM				
9. Simulation st	udy on Power Line Series Co	ompensator			
10. Harmonic	Analysis using any softwar	re			
11. Power qu	ality anzlysis of non-linear l	oads using pov	wer quality an	alyser	
12. Measuren	nent and testing of square wa	ave and PWM	Inverter		
13. Experime	nt on solar PV fed dc-dc cor	nverter			
14. Lab pract	ice on LABVIEW software	for power mor	nitoring and c	ontrol	
Out of the above	a a minimum of ning avnaria	monte ero to be	anduated 7	The simulation may	
be conducted us	ing MATI AB simulink/Mi	Power/PSC AI	Σ /FTAP or an	v dedicated	
software	sing WATLAD SINUMIK/ WI	I OWCI/I SCAI		ly dedicated	
In addition to th	e above the Department car	n offer a few n	ewly develop	ed experiments	
	Expecte	d Outcome		•••••	
The students are	e able to perform advanced e	experimental w	orks for indu	strial projects	
Internal Contin	uous Assessment: 100 marl	ks		X U	
1. Practical Reco	rds / Results summing to a to	otal of 40 Mar	ks		
2. Regular Class	Viva-Voce summing to a tot	tal of 20 Mark	S		
3. Final Test (International Content of Cont	ernal) having 40 Marks				

SEMESTER - III

Syllabus and Course Plan

Elective IV

Co	ourse No.	Course Name	L-T-P	Credits	Yea Introdu	r of uction
1()EE7405	Flexible AC Transmission Systems	3-0-0	3	201	18
Adv cont these	Course Objectives Advances in Power electronics Industry led to rapid development of Power Electronics controllers for fast real and reactive power control The aim of the course is to familiarise these advancements to the students					
Pow line Com Volt and Flov	Syllabus Power flow control - Benefits of FACTS -Transmission line compensation. Uncompensated line -shunt and series compensation .Reactive power compensation .Converters for Static Compensation. Static shunt and series compensators - Variable impedance type. Static Voltage and Phase Angle Regulators (TCVR &TCPAR). Switching Converter type shunt and series Compensators - principle of operation, configuration and control. Unified Power					
Upo cont Syst	n successful rol schemes f em	Expected completion of this course, st for Static VAR Compensators	l Outcome tudents will b s to mitigate p	e familiarize oower quality	d with the o problems i	different n Power
1. 2. 3.	NG Hingora T J E Mill Ned Moha	Refer ni and L Gyugyi, "Understar er, "Reactive Power Control an et. al "Power Electronics",	rences nding FACTS in Power Syst John Wiley a	", IEEE Press tems", John V and Sons.	s, 2000 Wiley, 1982	2
0.	1104 111011	COURS	E PLAN			
Module	Contents Blours Contents Contents Contents Contents					
Ι	Review of t profile alon effect; role unified com Steady-State Systems, Performance	transmission lines; surge im g radial and symmetrical line of reactive power compen pensation; effect on power fl e Reactive Power Control Reactive Power Compen e of Transmission Systems.	pedance load es, effect of lo sators; series <u>ow and voltaş</u> in Electric T nsation and	ing; voltage pad, Ferranti , shunt and ge profile. ransmission Dynamic	3	15
П	Converters Phase Co (Programm Inverters, M Level Inver Type and so Cascade Ty	for Static Compensation, onverters and Standard ed Harmonic Elimination fulti-Pulse Converters and Ir rters of Diode Clamped Ty uitable modulation strategies rpe and their modulation. Cur	Single Phase Modulation and SPW aterface Magn pe and Flyin . Multi-level rent Control of	and Three Strategies VM). GTO etics Multi- g Capacitor inverters of of Inverters	6	15
	The Static	FIRST INTE Var Compensator (SVC); 7	RNAL EXAN CR, FC-TCF	M and TSC-	3	15

III	TCR variants: circuits, characteristics		
	Transmission line compensation capability; dynamic model.	4	
	STATCOMs and their control, Series Compensators of Thyristor	4	
	Switched and Controlled Type and their Control, SSSC and its		
IV	Control		15
	Use of STATCOMs and SSSCs for Transient and Dynamic	4	
	Stability Improvement in Power Systems		
	SECOND INTERNAL EXAM		
	Passive Harmonic Filtering. Single Phase Shunt Current Injection		
	Type Filter and its Control, Three Phase Three-wire Shunt Active		
	Filtering and their control using p-q theory and d-q modelling	4	
V	Three phase four-wire shunt active filters.		20
	Hybrid Filtering using Shunt Active Filters. Series Active		
	Filtering in Harmonic Cancellation Mode. Series, Active	3	
	Filtering in Harmonic Isolation Mode.		
	The Dynamic Voltage Restorer (DVR); circuit and steady-state		
	characteristic; effect on transmission line compensation;	4	
VI	advantages over TCSC; DVR for power quality compensation;		20
	modes of control.		
	DVR for power quality compensation; modes of control.	3	
	END SEMESTER EXAM		

Course No.	Course Name	L-T-P	Credits	Year of Introduction		
10EE7407	Restructured Power System	3-0-0	3	2018		
	Course Objectives					
1. To introd	luce the restructuring of power indu	istry and ma	rket models.			
2. To impar	t knowledge on fundamental conce	pts of conge	stion managen	nent.		
3. To analy	ze the concepts of locational margin	nal pricing a	nd financial tra	ansmission rights.		
4. To illustr	rate about various power sectors in 1	India				
	Sylla	bus				
Restructurin	g of power industry- Introduction-	Deregulation	n of power ind	ustry Restructuring		
process-Fun	damentals of economics- Market m	odels; Tran	smission conge	estion management-		
Features-	Classification; Locational margi	nal pricing	g- LMP calo	culation; Financial		
Transmissio	n rights- Simultaneous feasibility	test and re	venue adequa	cy - FTR issuance		
process- Tr	eatment of revenue shortfall - F	low gate ri	ghts – FTR a	and market power;		
Ancillary se	rvices management- Classification-	- Load gene	ration balancin	g related services -		
Voltage con	ntrol and reactive power support	t devices -	Black start	capability service;		
Transmissio	Transmission pricing: principles-methods – Marginal transmission pricing paradigm. –					
Rolled in transmission pricing; Reforms in Indian power sector-Framework of Indian power						
sector – Ava	sector – Availability based tariff – Reforms in the near future.					
	Expected	Outcome				

Upon successful completion of this course, students will be able to understand the operation of a restructured power system and the concept of congestion management, marginal pricing and financial transmission rights.

References

- 1. Steven Stoft," Power system economics: designing markets for electricity", John Wiley & Sons, 2002.
- 2. Mohammad Shahidehpour, Muwaffaq Alomoush, Marcel Dekker, "Restructured electrical power systems: operation, trading and volatility" Pub., 2001
- 3. Sally Hunt," Making competition work in electricity John Willey and Sons Inc. 2002
- 4. Kankar Bhattacharya, Jaap E. Daadler, Math H.J. Boolen," Operation of restructured power systems", Kluwer Academic Pub., 2001.

	COURSE PLAN		
Module	Contents	Hours Allotted	% of Marks in End -semester Evamination
I	Introduction to restructuring of power industry Introduction: Deregulation of power industry, Restructuring process, Issues involved in deregulation, Deregulation various power systems. Fundamentals of Economics: Consumer behaviour, Supplier behaviour, Market equilibrium, Short and long run costs, Various costs of production.	3	15
П	Transmission congestion management Introduction: Definition of Congestion, reasons for transfer capability limitation, Importance of congestion management, Features of congestion management – Classification of congestion management methods – Calculation of ATC - Non – market methods – Market methods – Nodal pricing – Inter zonal and Intra zonal congestion management – Price area congestion management – Capacity alleviation method.	6	15
	FIRST INTERNAL EXAM		
III	Locational marginal prices: Mathematical preliminaries: Locational marginal Lossless DCOPF model for LMP calculation – Loss compensated DCOPF model for LMP calculation – ACOPF model for LMP calculation.	6	15
IV	Financial Transmission rights – Risk hedging functionality - Simultaneous feasibility test and revenue adequacy – FTR issuance process: FTR auction, FTR allocation – Treatment of revenue shortfall – Secondary trading of FTRs – Flow gate rights – FTR and market power - FTR and merchant transmission investment.	6	15
	SECOND INTERNAL EXAM		
	Ancillary service management- Introduction of ancillary services – Types of Ancillary services –Classification of Ancillary services – Load generation balancing related services	3	20

V	Voltage control and reactive power support devices – Black start capability service – method to obtain ancillary service – Co- optimization of energy and reserve services – International comparison	4	
VI	 Pricing of transmission network- Transmission pricing – Principles – methods – Marginal transmission pricing paradigm Merits and demerits of different paradigm.– Rolled in transmission pricing – Composite pricing paradigm – Merits and demerits of different paradigm. Reforms in Indian power sector- Introduction – Framework of Indian power sector – Reform initiatives - Availability based tariff – Electricity act 2003 – Open access issues – Power exchange – Reforms in the near future 	43	20

END SEMESTER EXAM

Course No.	Course Name	L-T-P	Credits	Year of Introduction	
10EE7107	Electric Vehicle Systems	3 - 0 - 0	3	2018	

Course Prerequisites

Basic knowledge of four stroke and two storke engines, Various type of motors used for traction purpose; DC series, Slip ring IM, Basics of Electrical Drives, Fuel Cell - UG Level.

Course Objectives

This course is designed to understand electric vehicles and to develop design skills for electric vehicles. This course will introduce general aspects of Electric Vehicles (HEV), including architectures, modeling, sizing, vehicle control. It will cover vehicle dynamics, energy storage sources, electric propulsion systems, power electronics design, and EV drives.

Syllabus

Fundamentals of Vehicle Propulsion and Brake: - Vehicle Resistance - Dynamic Equation -Tire–Ground Adhesion and Maximum Tractive Effort - Power Train Tractive Effort and Vehicle Speed - Vehicle Power Plant and Transmission Characteristics - Vehicle Performance

Internal Combustion Engines – 4 stroke spark ignited and compression ignited engines – 2 stroke engines – Wankel rotary engines – strirling engines – gas turbine engines – quasi isothermal brayton cycle engines

Electric vehicles: configuration – performance – tractive effort in normal driving – energy consumption

Hybrid electric vehicles: series and parallel electric drive trains

Electric propulsion systems: DC motor drives - Induction motor drives - permanent

magnet BLDC motor drives – SRM drives – SRM design

Parallel (Mechanically Coupled) Hybrid Electric Drive Train Design - Design and Control Methodology of Series–Parallel (Torque and Speed Coupling) Hybrid Drive Train -Statistics of Daily Driving Distance - Energy Management Strategy - Energy Consumed in Braking and Transmission - Regenerative Breaking - Control Strategy for Optimal Energy Recovery

Fuel Cells - Fuel Cell Hybrid Electric Drive Train Design - Power and Energy Design of Energy Storage

Expected Outcomes

- 1. Identify the various fundamentals in the traction design problems
- 2. Understand the various factors that influence the vehicle tractive power and performance.
- 3. Able to design hybrid electric vehicle system depending on the power requirement, input available, energy management requirement, alternate fuel system etc.
- 4. Propose various electric driving motors and Power electronics drives systems for electrical vehicle.

Text books

- 1. Modern Electric Vehicles, Hybrid Electric and Fuel Cell Vehicles 2nd Edition Meherdad Ehsani, Yimin Gao, Ali Emadi CRC Press
- 2. Electric Vehicle Technology Explained James Larminie, John Lowry John Wiley & Sons
- 3. Batteries for Electric Vehicles (Electronic & Electrical Engineering Research Studies Power Sources Technology) - D Rand - Wiley-Blackwell (21 January 1998)
- Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design, Second Edition (Power Electronics and Applications Series) - <u>Mehrdad Ehsani</u>, <u>Yimin Gao</u>, <u>Ali Emadi</u>, Standardsmedia (2009)

References

- 1. Propulsion System for Hybrid Vehicle" 2nd Edition" by John M. Miller
- 2. History of Electric Vehicles Bellis

Course plan					
Module	Content	Hours	Semester Exam Marks (%)		
I	Fundamentals of Vehicle Propulsion and Brake: - Vehicle Resistance - Dynamic Equation - Tire– Ground Adhesion and Maximum Tractive Effort - Power Train Tractive Effort and Vehicle Speed - Vehicle Power Plant and Transmission Characteristics - Vehicle Performance.	6	15		
п	Internal Combustion Engines – 4 stroke spark ignited and compression ignited engines – 2 stroke engines – Wankel rotary engines – strirling engines – gas turbine engines – quasi isothermal brayton cycle engines Electric vehicles: configuration – performance – tractive effort in normal driving – energy consumption Hybrid electric vehicles: series and parallel electric drive trains	8	15		

	First Internal Examination				
III	Electric propulsion systems: DC motor drives – Induction motor drives – permanent magnet BLDC motor drives – SRM drives – SRM design	6	15		
IV	Parallel (Mechanically Coupled) Hybrid Electric Drive Train Design - Design and Control Methodology of Series–Parallel (Torque and Speed Coupling) Hybrid Drive Train - Statistics of Daily Driving Distance	8	15		
	Second Internal Examination				
v	Energy Management Strategy - Energy Consumed in Braking and Transmission - Regenerative Breaking - Control Strategy for Optimal Energy Recovery Fuel Cells -	8	20		
VI	Fuel Cell Hybrid Electric Drive Train Design - Power and Energy Design of Energy Storag	6	20		
Total		42	100		
	Assignments	2 to 4			
	Group task design – (6 to 8 Students per group)	1			
	End Semester Examination				

Course No.	Course Name	L-T-P	Credits	Year of Introduction		
10EE7117Soft Computing Technique3 - 0 - 03						
Course Prerequ	Course Prerequisites					
Basic knowled	ge of Engineering at UG Level.					
Course Objectives						
1. Learn the various soft computing techniques						
2. Be familiar with design of various neural networks.						
3. Learr	n genetic programming.					
4. Be ex	posed to hybrid systems.					
Syllabus						
Fuzzy Set Theor	y, Regression and Optimization, Ne	eural Netwo	rks, Neuro-Fi	uzzy Modeling,		
Advanced Neuro	-Fuzzy Modeling, Neuro-Fuzzy Co	ontrol, Adva	nced Applica	tions.		
Expected Outco	omes					
The students are	expected to apply the soft computing	ng technique	es in Electrica	al Engineering		
control applicati	control applications.					
11						
References						

S.Rajasekaran and G.A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis & Applications", Prentice-Hall of India Pvt. Ltd., 2006.

- 2) George J. Klir, Ute St. Clair, Bo Yuan, "Fuzzy Set Theory: Foundations and Applications" Prentice Hall, 1997.
- 3) David E. Goldberg, "Genetic Algorithm in Search Optimization and Machine Learning" Pearson Education India, 2013.
- 4) James A. Freeman, David M. Skapura, "Neural Networks Algorithms, Applications, and Programming Techniques, Pearson Education India, 1991.
- 5) Simon Haykin, "Neural Networks Comprehensive Foundation" Second Edition, Pearson Education, 2009
- 6) J.S.R.Jang, C.T. Sun and E.Mizutani, "Neuro-Fuzzy and Soft Computing", PHI / Pearson Education 2004.
- 7) S.N.Sivanandam and S.N.Deepa, "Principles of Soft Computing", Wiley India Pvt Ltd, 2011.

	Course plan					
Module	Content	Hour s	Semester Exam Marks (%)			
I	Introduction to Neuro-Fuzzy and Soft Computing, Fuzzy Set Theory, Fuzzy Sets Fuzzy Rules and Fuzzy Reasoning, Fuzzy Inference Systems.	8	15			
II	Regression And Optimization, Least-Squares Methods for System Identification, Derivative-Based Optimization, Derivative-Free Optimization.	6	15			
	First Internal Examination					
ш	Neural networks, Adaptive Networ, Supervised Learning Neural Networks, Learning from Reinforcement, Unsupervised Learning and Other Neural Networks.	8	15			
IV	Neuro-fuzzy modeling, ANFIS: Adaptive-Networks- based Fuzzy Inference System, Coactive Neuro-Fuzzy Modeling: Towards Generalized ANFIS.	6	15			
	Second Internal Examination		•			
V	Advanced Neuro-fuzzy modeling, Classification and Regression Trees, Data Clustering Algorithms, Rule base Structure Identification, Neuro-Fuzzy Control, Neuro-Fuzzy Control.	8	20			
VI	Advanced applications, ANFIS Applications, Fuzzy- Filtered Neural Networks, Fuzzy Theory and Genetic Algorithms in Game Playing, Soft Computing for Color Recipe Prediction.	6	20			
		42	100			
	End Semester Examination					

Elective V	V
------------	---

Cou	rse No.	Course Name	L-T-P	Credit	s Y	ear of oduction
10E	E7411	Transient Analysis in Power System	3-0-0	3		2018
To in	Course Objectives To introduce various types of transient over-voltages in power system and the methods					
Lightr Transf Transf protec	ning, Trav former mo formers - (tion of line	Syllabus velling waves, switching transies del for switching on open circuit, s Generators and motors, Transmission es and stations Expected Outco	nts, Abnor surges in tra n lines Prote	rmal sw ansforme ective De	ritching t r, Voltage evices and	ransients, e surges - Systems,
Upon 1. 2. 3.	completion Identify di Model dif Design pro	on of this course, students will be able ifferent types of transient over-voltag ferent equipment's for transient study otective devices against transient ove	e to ges, y, r-voltages			
 References 1. Allen Greenwood, 'Electrical Transients in Power Systems', Wiley Interscience, 1971 2. Bewely L. W., 'Travelling Waves and Transmission Systems', Dover Publications, New York,1963 3. Gallaghar P. J. and Pearmain A. J., 'High Voltage Measurement, Testing and Design', John Wiley and Sons, New York, 1982. 4. Klaus Ragallea, 'Surges and High Voltage Networks', 1980. 5. Diesendrof W., 'Overvoltages on High Voltage Systems', Rensselaer Book Store, Roy, New York, 1971. 6. V.Kamaraju and M.S. Naidu , 'High Voltage Engineering 				1971 ons, New Design', tore, Roy,		
Module		Contents			Hours Allotted	% of Marks in End -semester
Ι	Lightning external mathema mid span	g: Transients in electric power syste causes of over voltages - ligh tical model to represent lightning - st -prevention of lightning over voltage	ms - interna tning strol roke to tow s.	al and tes – er and	6	15
II	III Travelling waves - travelling waves in transmission lines, selection of typical wave to represent over voltages. 4 III Switching Transients: - the circuit closing transient - the recovery transient initiated by the removal of the short circuit 4 15 FIRST INTERNAL EXAM					
	Abnorma capacitar	al switching transients - curren nce switching - arcing ground - tr	t suppress ansformer	ion - inrush		15

III	current – ferro resonance - neutral connections - transients in switching a three phase reactor- three phase capacitor , symmetrical –component method for solving three phase switching transients	7	
IV	Transformer model for switching on open circuit, surges in transformer- Step voltage - voltage distribution in transformer winding –winding oscillations - Travelling wave solutions - Transformer core under surge conditions.	6	15
	SECOND INTERNAL EXAM		
V	Voltage surges -Transformers - Generators and motors – Transient parameter values for transformers - Reactors - Generators motors-transmission lines and cables, characteristics of bus work, measurement of transient recovery voltages in a power plant.	7	20
VI	Transmission lines Protective Devices and Systems: Basic idea about protection - surge diverters - surge absorbers - ground fault neutralizers protection of lines andstations by shielding -ground wires counter poises - driven rods - modern lightning arrestors insulation coordination - protection of alternators- industrial	4	20
	drive systems	4	

END SEMESTER EXAM

Course No.	Course Name	L-T-P	Credits	Year of Introduction		
10FF7413	SCADA System and					
1022/415	Applications	3-0-0 3		2018		
	Course Obj	ectives				
To introdu	ce SCADA systems, its compo	onents, arch	itecture, com	munication and		
applications						
	Syllabi	us				
Introduction	to SCADA systems, Fundamenta	l Principle	of Modern S	CADA Systems,		
Monitoring a	and supervisory functions ,Applic	cation area	of SCADA s	system, SCADA		
System Com	ponents, Remote Terminal Unit-(R	TU), Intelli	gent Electronio	c Devices (IED),		
Programmabl	e Logic Controller (PLC), Con	mmunication	n Network, S	SCADA Server,		
SCADA/HM	I Systems.					
SCADA Arc	hitecture: Various SCADA architecture	ctures, adva	ntageous and	disadvantageous,		
SCADA C	ommunication: Various indust	trial comr	nunication,	Open standard		
communication	on protocols, Operation and co	ontrol of i	nterconnected	power system,		
Automatic su	bstation control, SCADA configuration	ation, Energ	y managemen	t system, System		
operating sta	tes, System security, state estimation	tion, SCAD	A Application	ns, Case studies,		
Implementati	Implementation. Simulation exercises.					
Expected Outcome						
Upon succes	sful completion of this course, stude	ents will be	able to			
1. Use S	SCADA systems in different en	ngineering	applications	such as utility,		

	communication, automation, control, monitoring etc.					
	References					
1	1. Stuart A Boyer. SCADA-Supervisory Control and Data Acquisition', Instrument					
	Society of America Publications. USA. 1999.					
2	2. Gordan Clarke, Deon RzynAzvs, Practical Modern SCADA Protocols: DNP3,					
	60870J and Related Systems', Newnes Publications, Oxford, UK	5,2004				
3	. David Bailey, Edwin Wright, Practical SCADA for Industry, N	ewnes (an i	mprint of			
	Elsevier). 2003		r			
4	KLS Sharma, Overview of Industrial Process Automation, Elsev	vier Publicat	ion .			
	COURSE PLAN					
			٩			
			stel			
			urk nes			
le	Contents	ed	M8 Sen			
qu		urs ott	of] d -:			
Mo		Ho All	En.			
F	Introduction to SCADA	T T				
	Introduction to SUADA systems:					
-	Evolution of SCADA, Fundamental Principle of Modern					
I	SCADA Systems, Monitoring and supervisory functions,					
	Application area of SCADA, Consideration and benefits of	-				
	SCADA system	6	15			
	SCADA System Components:					
	Remote Terminal Unit-(RTU), Intelligent Devices (IED), PLC					
п	Block diagram, programming languages, Ladder diagram,	0	15			
11	Functional block diagram, Applications, Interfacing of	0	15			
	PLC with SCADA. Communication Network, SCADA Server,					
	SCADA/HMI Systems.					
	FIRST INTERNAL EXAM					
	SCADA Architecture:					
III	Various SCADA architectures, advantages and		15			
	disadvantages of each system, Single unified standard	7	15			
	architecture, IEC 61850 SCADA / HMI Systems					
	SCADA Communication:					
	Various industrial communication technologies -wired					
IV	and wireless methods and fibre ontice Open standard	7	15			
	communication protocols	2				
	SECOND INTERNAL FYAM					
	Operation and control of interconnected power system					
	Automatic substation control SCADA configuration Energy	8				
	management system System operating states. System accurity	0	20			
X 7	state actimation		20			
V 7/1	State estimation.					
VI	SCADA Applications:					
	Utility applications Transmission and Distribution sector					
	operations, monitoring, analysis and improvement. Industries -					
	oil, gas and water. Case studies: Implementation. Simulation		20			
	Exercises	7				
	End Semester Exam					

Cours	se No.	Course Name	L-T-P	Credits	Ye Intro	ar of duction
10EE	E7415	Biomedical Instrumentation	3-0-0	3	2	018
To pro applic	Course Objectives To provide an introduction to the modern Biomedical instruments and systems, features and applications					
Syllabus Introduction to the physiology of cardiac, nervous; muscular and respiratory systems; Action potentials -De-polarization; repolarization; Absolute and relative refractory periods; Generation propagation and transmission; Measurement of electrical activities in heart, Electrocardiography; Measurement of electrical activities in brain, Electroencephalogram; Measurement of electrical activities in muscles; Determination of conduction velocity in a nerve fiber. Important applications of EMG; Measurement of blood flow; Direct and Indirect methods; Therapeutic Equipment - Cardiac pace-makers, Types of pace-makers; Defibrillators, Types of defibrillators, Electrodes used in defibrillators, diathermy machines, Micro wave and short wave diathermy machines. Introduction to Biomedical signal processing; Analysis of x-rays; CT and MRI images; Basic methods; Instrumentation for clinical laboratory; Measurement of pH value of blood, ESR measurements, GSR measurement, modern imaging modalities ; X-ray machines, Diagnostic X-rays- Computed Tomography; Ultra sonography; Magnetic resonance imaging. Nuclear medicine; Radio						
Cyber Upon	knife.	Expected O ssful completion of this course, st	Putcome udents will	have insigh	nt into oper	ation and
maint	enance	of modern biomedical equipment u	sed in clinic	al practice.		
1.	R. S. K Ltd N	Referen Chandpur, Handbook of Biomedical Jew Delhi	nces Instrumenta	ation, TMH	Publishing	Company
2. 3.	Joseph Pearson Leslie India, I	J. Carr, John M Brown, Introduc n Education (Singapore) Pvt. Ltd. Cromwell, "Biomedical Instrume New Delhi.	tion to Bion	medical Equ Measurem	uipment Techents", Pren	chnology, ntice Hall
	I	COURSE	PLAN			I
Module		Contents			Hours Allotted	% of Marks in End -semester
I	Introd and re potent relativ transn of tran	Luction to the physiology of cardia espiratory systems. Transducers an tials- De-polarization – repolarizati ve refractory periods- generation nission. Significance of after poten naducers and their selection for biom	ac, nervous, nd Electrode on- Absolut on propaga tials, Diffen nedical appl	muscular es, Action e and ation and rent types ications.	6	15
II	Electro electro selecti	ode theory, Different types of odes, hydrogen, calomel, Ag-A ion criteria of electrodes.	electrodes, AgCl, pH	reference electrode,	6	15

	FIRST INTERNAL EXAM					
ш	Measurement of electrical activities in heart, brain and muscles- Electrocardiography- EEG machine, Disease diagnosis from ECG, Computer aided electro cardiographs- Applications of ECG. Electro encephalogram and their interpretation. EEG machine applications, Rapid eye movement- Electromyography, EMG machines, Conduction velocity in a nerve fiber. Important applications of EMG.	9	15			
IV	Electromagnetic and ultrasonic measurement of blood flow, various methods, Therapeutic Equipment - Cardiac pace- makers, Types of pace-makers, Defibrillators, Types of defibrillators, Electrodes used in defibrillators, diathermy machines, Microwave and short wave diathermy machines.	9	15			
	SECOND INTERNAL EXAM		r			
v	Introduction to Biomedical signal processing, Methods of signal processing – Digital and analogue. Introduction to Biomedical image processing- Analysis of x-rays, CT and MRI images – Basic methods.	6	20			
VI	Instrumentation for clinical laboratory - Measurement of pH value of blood, ESR, and GSR measurement, modern imaging modalities - X-ray machines, Diagnostic x-rays- Computed Tomography –Ultrasonography - Magnetic resonance imaging - Nuclear medicine -Radio isotopic instrumentation - Medical uses of isotopes –Applications of		20			
	robotics in medical field- Cyber knife.	6				
	END SEMESTER EXAM					

Course No.	Course Name	L-T-P	Credits	Year of Introduction
10EE7111	Custom Power Devices	3 - 0 - 0	3	2018
Course Prerequi	isites			
Basic knowledg	ge of Electrical power systems and po	wer electror	nics at UG	Level.
Course Objectiv	es			
The course is designed to provide students a strong background in the design and				
development of custom power devices for power quality improvement				
Syllabus				
Power quality –Power electronic application in Transmission systems and distribution				
systems-Custom power devices-Network configuring and compensating devices- SSCL,				
SSB, SSTS, custom power park- DSTATCOM-compensator for single phase and three				
phase loads - DVR-Rectifier and capacitor supported-DVR structure-UPQC structure and				
control of left shunt and right shunt UPQC-Active filters-shunt, series, hybrid filters				

Expected Outcomes

The students are expected to apply the general principles of power quality improvement using custom power devices.

References

- 1) L Ghosh and G Ledwich,"Power quality enhancement using custom power Devices," Kluwer Publications, London, 2003
- 2) K R Padiyar, "FACTS controllers in Power Transmission and Distribution," New Age publications, New Delhi, 2007
- 3) R Sastry Vedam,"Power quality VAR compensation in power systems," CRC press, NewYork,2009
- 4) H Akagi, New Trends in active filters for power conditioning, IEEE TIA, vol.32,no.6,pp1312-1322,1996.

5) B Singh, P Jayaprakash, R Somayajulu, D P Kothari, "Reduced Rating VSC With a Zig-Zag Transformer for Current Compensation in a Three-Phase Four-Wire Distribution System", IEEE Transactions on Power Delivery, Vol. 24, Jan. 2009.

Course nlan

Module	Content	Hours	Semester Exam Marks (%)	
I	Power quality –Power electronic application in Transmission systems and distribution systems- distributed generation- Power quality terms -transients, over voltage, under voltage, sag, swell, harmonics, flicker- PQ problems-poor power factor, unbalanced loads, disturbances in supply voltage.	8	15	
П	Custom power devices-Network configuring and compensating devices- SSCL, SSB, SSTS, custom power park- Structure and control of power converters- open loop voltage control and closed loop voltage control- custom power park	6	15	
	First Internal Examination			
III	DSTATCOM-compensator for single phase and three phase loads -generating reference current using instantaneous reactive power theory and SRF theory- reference signal generation-	8	15	
IV	Neutral current compensation in three phase four wire systems- zig-zag transformers- active techniquesthree phase four wire DSTATCOM – Various structures- design and simulation methods- A case study	6	15	
Second Internal Examination				
V	DVR-Rectifier supported and capacitor supported-DVR structure – DVR control- reference signal generation- design and simulation methods- A case study	8	20	
VI	UPQC structure and control of left shunt and right shunt UPQC-Active filters-shunt, series, hybrid filters- Uninterrupted Power supplies- Constant Voltage Transformers	6	20	
		42	100	
End Semester Examination				

Course No.	Course Name	L-T-P	Credits	Year of Introduction
10EE7401	Seminar II	0-0-2	2	2018

Course Prerequisites

(1) The habit of reading technical magazines, conference proceedings, journals etc.;

(2) Knowledge in technical writing and communication skills earned through seminar at UG level and in first semester;

(3) The course Seminar-I in the first semester

Course Objectives

1) To enhance the reading ability required for identification of the thesis area and its literature review.

2) To develop skills regarding professional communication and technical report writing;

3) To establish the fact that student is not a mere recipient of ideas, but a participant in discovery and inquiry.

4) To arrive at a conclusion for doing Project Phase I.

5) To learn how to prepare and publish technical papers.

Guidelines

Students have to present a second seminar in 3rd semester. It is highly recommended that seminar- 2 may report the literature survey being conducted as a requirement for doing the main project. Since the topic for the main project topic is to be finalized at the end of the second semester/ in the beginning of the 3rd semester, one can perform the literature search and present it as a seminar towards the middle of the semester. The Progress Evaluation Committee (PEC) formed in the second semester itself, may be the panel of evaluators for Seminar-II also. The presentation of seminar-II shall be of 20 minutes duration with another 5 minutes allocated for a discussion session. The committee shall evaluate the seminar based on the style of presentation, technical context, and coverage of the topic, adequacy of references, depth of knowledge and the overall quality. Moreover, each student has to submit a seminar report in the prescribed format given by the Institution. It is recommended that the report for seminar-II may be in the form of a technical paper which is suitable for publishing in Conferences / Journals as a review paper. This makes a

student learn how to publish a paper and consequently develops a publishing culture among the PG student community. The references cited in the report shall be *authentic*.

Expected Outcomes

At the end of the course students will be able to:

 \Box Be motivated in reading which equip them in identification of thesis area and its literature review;

 \Box Develop the capacity to observe intelligently and propose and defend opinions and ideas with tact and conviction;

□ Develop skills regarding professional communication and oral presentation;

 \Box Arrive at a conclusion for doing Project Phase 1;

□ Develop skills for technical report writing

□ Learn the methodology of publishing technical papers..

References

1. M. Ashraf Rizvi, *Effective Technical Communication*, Tata McGraw Hill, New Delhi, 2005

2. Day R A, *How to Write and Publish a Scientific Paper*, Cambridge University Press, 1989

3. Coley S M and Scheinberg C A, *Proposal Writing*, 1990, Newbury Sage Publications. **Course plan**

Item	Description	Time
1	Abstract Submission	3 Weeks
2	Allotment of Topic and Scheduling Seminars	1 Week
3	Literature Review and Presentation Sessions	6 Weeks
4	Report Submission	3 Weeks
5	Publishing Grades	1 Week

1. Presentation (Verbal & Nonverbal Communication skills) : 20 Marks

2. Breadth of the literature review (Coverage : Content of the slides and speech) : 20 Marks

3. Depth of knowledge (Ability to answer questions) : 30 Marks

4. Seminar Report / Paper in the prescribed format given by the Institution : 30 marks

Course No.	Course Name	L-T-P	Credits	Year of Introduction
10EE7403	Project (Phase 1)	0-0-12	6	2018

Course Prerequisites

(1) The habit of reading technical magazines, conference proceedings and journals;

(2) Interest solving in socially relevant or research problems;

(3) Skills in hardware/software implementation techniques earned from UG studies and the mini project done in second semester;

(4) The courses Research Methodology, Mini Project, and Seminar-2 done in previous semesters.

Course Objectives

(1) To start experimentation based on the background knowledge acquired through the literature survey performed for seminar-II;

(2) To work on the topic, familiarize with the design and analysis tools required for the project work and plan the experimental platform, if any, required for project work;

(3) To develop the skill of identifying research problems/ socially relevant projects;

(4) To enhance the skills regarding the implementation aspects of hardware/ software projects.

Guidelines

Each student has to identify a topic related to the branch of specialization for his/her main project under the guidance of a faculty member and the related experimentations namely project – phase I, should be started in the 3rd semester. The project topic has to be approved by a committee constituted by the department. This committee, namely Progress Evaluation Committee (PEC), should study the feasibility of each project work before giving consent. It is recommended that students should execute the project work using the facilities of the institute itself. However, external projects can be taken up in the 4th semester, if that work solves a technical problem of the external firm. Prior sanction should be obtained from the Head of Institution before taking up external project work.

Project work is to be carried out in the 3rd and 4th semesters and also to be evaluated in both semesters. It is recommended that the same faculty member may serve as his/her Project Supervisor during 4th semester also. This project phase is conceptualized in such a way that, the outcomes of the work may be continued for the project - phase II. Hence on completion of this project phase, the student will make a presentation based on the work and suggest future plan for his project - phase II. The implementation of the project - phase I can be software and/or hardware based one. This project phase is also envisaged as a way for implementing *problem based learning*. Problems of socially relevance and/or problems identified by the institute/ research organizations/ industry/ state should be given high priority. In such interdisciplinary and inter institutional projects, a student can have co-guide(s) from other department/ institute/ research organizations/ industry. The university encourages *interdisciplinary projects* and *problem based learning strategy*. The following guidelines also have to be followed.

1. The student will submit a detailed *project report* for project -phase I;

2. The student will present at least two seminars;

3. The *first one* in the beginning of the semester will highlight the topic, objectives and methodology;

4. A progress seminar can be conducted in the middle of the semester (optional);

5. The *third seminar* will be an end-semester presentation of the work they have completed till the end of the 3rd semester and the scope of the work which is to be accomplished in the 4^{th} semester, mentioning the expected results.

All such presentations are to be evaluated internally by the progress evaluation committee (PEC).

All the references cited in the report for project - phase I shall be *authentic*.

Expected Outcomes

The students are expected to :

(1) Develop the skill of identifying industrial/ research problems/ socially relevant projects;

(2) Develop skills regarding enumerating and selecting problems, subsequent analysis, and effective implementation of the solution;

(3) Have hands on experience in design and analysis tools required for the project work;

(4) Plan the experimental platform, if any, required for project work, which will be helpful in actual real life project planning;

(5) Enhance the skills regarding the implementation aspects of hardware/ software projects;

(6) Acquire documentation and problem solving skills;

(7) Develop professionalism;

(8) Effectively communicate technical information by means of written and oral reports **References**

1. J.W. Bames, *Statistical Analysis for Engineers and Scientists*, McGraw Hill, New York.

2. Schank Fr., Theories of Engineering Experiments, Tata McGraw Hill Publication.

3. Douglas C Montgomery, Design and analysis of experiments, Wiley International

4. Leedy P D, *Practical Research : Planning and Design*, 4th Edition, N W MacMillan Publishing Co.

Course plan			
Item	Description	Time	
1	Abstract Submission	2 Week	
2	Allotment of Topic	1 Week	
3	Preliminary Presentation Sessions	1 Week	
4	Implementation Phase	9 Weeks	
5	Final Presentation-cum Demonstration	1 Week	

Marks: 50 for Project Progress Evaluation

- 1. Preliminary presentation, evaluated by the PEC: 15 Marks
- 2. Progress evaluation by the Project Supervisor/s: 20 Marks
- 3. End-semester presentation, evaluated by the PEC: 15 Marks

SEMESTER - IV

Syllabus and Course Plan

Course No.	Course Name	L-T-P	Credits	Year of
10EE7404	Project (Phase I1)	0-0-22	12	2018
Course Prerequis	ites			
(1) The habit of rea	ading technical magazines, co	onference proc	eedings and j	ournals;
(2) Interest in solv	ing socially relevant or resear	ch problems;		
(3) Skills in hardw	vare/ software implementatio	n techniques	earned from	UG studies and
mini project in the	second semester;			
(4) The courses Re	esearch Methodology, Semina	ar-II and Proje	ct - Phase I d	one in previous
semesters.				
Course Objective	S I I I I I I I I I I I I I I I I I I I		1 • 1 •	11 1 1
(1) 10 implement	and complete the M. Tech.	thesis work,	which is nor	mally based on
Project - Phase 1; (2) To have a cont	ny over work on the tenie and	l ant immensued	rogulta	
(2) To have a contract (2) To develop the	skill of achieving specific real	i get improved	n a limited tir	201
(3) To develop the (4) To develop ski	lls regarding professional cor	nmunication a	a fifficu un	report writing
Guidelines	ins regarding professional con	minumeation a	ind teenmear	report writing.
Each student has	to complete the project - r	ohase II unde	r the guidan	ce of a faculty
member, as specifi	ed in phase-I, since this phase	se is generally	an extension	of the previous
phase. It is recommended that students should execute the project work using the facilities				
of the institute itse	elf. However, external projec	ts can be take	n up in this s	semester, if that
work solves a tech	work solves a technical problem of the external firm. Prior sanction should be obtained			
from the Head of I	from the Head of Institution before taking up external project work. This project phase is			
also envisaged as a way for implementing problem based learning. Problems of socially				
relevance and/or problems identified by the institute/ research organizations/ industry/				
state should be given high priority. In such interdisciplinary and inter institutional				
projects, a student can have co-guide(s) from other department/ institute/ research				
organizations/ industry. The university encourages interdisciplinary projects and problem				
based learning stre	ategy. The following guidelin	es also have to	be followed	
1. The student will	1. The student will submit a detailed report for project - phase II;			

3. The *first seminar* in the beginning of the semester will highlight the topic, objectives,

methodology and the background knowledge and preliminary results carried over from the phase I;

4. A progress seminar can be conducted in the middle of the semester;

5. The *third seminar*, could be a *pre-submission seminar*, will be a presentation of the work they have completed till the end of 4th semester and the scope for future work. The presubmission seminar has to be presented before the Progress evaluation committee (PEC) for being assessed for the quality and quantum of the work. This would be the qualifying exercise for the students for getting approval from the Department Committee for the submission of the Thesis.

6. Incorporating the suggestions by the PEC, each student has to convert the project - phase II report to a Thesis and to submit to the University (Cluster) for external evaluation. At least one technical paper is to be published in Journals / Conferences so as to meet the requirements for final external submission.

7. The University will appoint an External Expert to evaluate the Thesis through a final presentation by the student.

The comments of the examiners during this presentation should be incorporated in the work and the approved Thesis is to be submitted to the Institution as hard bound copies, before the program exit by the student.

All the references cited in the Thesis shall be *authentic*.

Expected Outcomes

The students are expected to :

(1) Develop the skill of identifying industrial/ research problems/ socially relevant projects;

(2) Develop skills regarding enumerating and selecting problems, subsequent analysis, and effective implementation of the solution;

(3) Have hands on experience in design and analysis tools required for the project work ;

(4) Plan the experimental platform, if any, required for project work, which will be helpful in actual real life project planning;

(5) Enhance the skills regarding the implementation aspects of hardware/ software projects;

(6) Acquire documentation and problem solving skills;

(7) Develop professionalism;

(8) Effectively communicate technical information by means of written and oral reports.

References

1. J.W. Bames, Statistical Analysis for Engineers and Scientists, McGraw Hill, New York.

2. Schank Fr., Theories of Engineering Experiments, Tata McGraw Hill Publication.

3. Douglas C Montgomery, *Design and analysis of experiments*, Wiley International

4. Leedy P D, *Practical Research : Planning and Design*, 4th Edition, N W MacMillan Publishing Co

Course plan				
Item	Description	Time		
1	Implementation Phase	10 Weeks		
2	Thesis Preparation	3 Weeks		
3	Pre-submission seminar-cum Demonstration	1 Week		
4	Evaluation by the External expert	4 Weeks		

Marks: 100 for Final Evaluation

1. Preliminary presentation, evaluated by the PEC: 20 Marks

2. Project evaluation by the supervisor/s: 30 Marks

3. Pre-submission seminar evaluated by the PEC: 20 Marks

4. Evaluation of the thesis presentation by an External Expert: 30 Marks