APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Cluster No. 10 for PG Programs

(Engineering Colleges in Kannur, Wayand & Kasaragod Districts)

Curriculum, Scheme of Examinations and Syllabi for M. Tech. Degree Program with effect from Academic Year 2015 - 2016

Electrical & Electronics Engineering

M. Tech.

in

Power Electronics & Drives

(No. of Credits: 66)

SCHEME OF M. TECH PROGRAMME IN POWER ELECTRONICS AND DRIVES

FIRST SEMESTER

	<i>a</i> .		Hou	rs/V	Veek	-		ESE		Credit
Slot	Code	Subject	L	Т	Р	ICA	Hrs	Marks	Total	Credit
А	10EE6101	Computational Techniques	3	1	0	40	4	60	100	4
В	10EE6103	Design & Analysis of Power Electronic Systems	3	0	0	40	3	60	100	3
С	10EE6105	Advanced Machine Drives	3	0	0	40	3	60	100	3
D	10EE6107	Power Converters- I	3	0	0	40	3	60	100	3
E	10EE6xxx	Elective-I	3	0	0	40	3	60	100	3
F	10GN6001	Research Methodology	0	2	0	100	-	0	100	2
G	10EE6109	Seminar-I	0	2	0	100	-	0	100	2
Н	10EE6111	Power Electronics Lab	0	0	2	100	-	0	100	1
		TOTAL	15	5	2	500		300	800	21

L-Lecture T-Tutorial P-Practical

ICA-Internal Continuous Assessment

ESE-End Semester Examination

<u>ELECTIVE I</u>

10EE6113 Special Machines

10EE6115 Computer Aided Design of Electrical Machines

10EE6117 Power Quality Issues and Remedial Measures

10EE6203 System Theory

10EC6105 Advanced Digital Signal Processing

Note: 8 hours/week is meant for departmental assistance by students.

Slot	Code	Subject		Hours/Week		ICΔ	ESE		Total	Credit
5101		Bubjeet	L	Т	Р	ICA	Hrs	Marks	Total	Crean
А	10EE6102	Power Converters- II	3	1	0	40	4	60	100	4
В	10EE6104	Control Techniques in Power Electronics	3	0	0	40	3	60	100	3
С	10EE6106	Machine Analysis and Control	3	0	0	40	3	60	100	3
D	10EE61xx	Elective-II	3	0	0	40	3	60	100	3
E	10EE61xx	Elective-III	3	0	0	40	3	60	100	3
F	10EE6108	Mini Project	0	0	4	100	-	0	100	2
Н	10EE6112	Advanced Drives Lab	0	0	2	100	-	0	100	1
		TOTAL	15	1	6	400		300	700	19

SECOND SEMESTER

L-Lecture T-Tutorial P-Practical ICA-Internal Continuous Assessment ESE- End Semester Examination

ELECTIVES II

10EE6114 Industrial Control Electronics

10EE6116 Power Conversion in Renewable Energy Systems

10EE6122 Microcontroller Applications in Power Electronics

10EE6124 High voltage DC and AC Transmission

10ME6116 Design of Experiments

10ME6122 Quality Management system and Reliability

10ME6124 Project Engineering and Management

ELECTIVES III

10EE6118 Power Semiconductor Devices

10EE6126 Energy Management

10EE6128 Wind Energy Conversion Systems

10EE6132 Distributed Generation and Micro grid

Note: 8 hours/week is meant for departmental assistance by students.

Slot	Code	Subject	Но	Hours/Week ICA ESE To	Total	Credit				
		Subject	L	Т	Р	ICA	Hrs	Marks		Cledit
А	10EE7xxx	Elective-IV	3	0	0	40	3	60	100	3
В	10EE7xxx	Elective-V	3	0	0	40	3	60	100	3
Н	10EE7101	Seminar-II	0	2	0	100	-	0	100	2
	10EE7103	Project-Phase I	0	0	14	50	I	0	50	6
		TOTAL	6	2	14	230		120	350	14

THIRD SEMESTER

L-Lecture T-Tutorial P-Practical

ICA-Internal Continuous Assessment

ESE- End Semester Examination

ELECTIVE IV

10EE7105 FACTS Controllers

10EE7107 Electric Vehicle Systems

10EE7117 Soft computing technique

10EC7207 Micro Electro Mechanical Systems

ELECTIVES V

10EE7109 Induction Generators

10EE7111Custom Power Devices

10EE7113 Analysis, Modelling and Control of Electric Drives

10EE7115 Advanced control of PWM inverter fed induction motors

Note: 8 hours/week is meant for departmental assistance by students.

FOURTH SEMESTER

Slat	Code	Subject	Hours/W		Hours/Week		ICA	ESE		Total	Cradit
5101		Subject	L	Т	Р	ICA	Hrs	Marks		Crean	
	10EE7104	Project –Phase II	-	-	22	70	-	30	100	12	
		TOTAL	-	-	22	70		30	100	12	

L-Lecture T-Tutorial P-Practical ESE-End Semester Examination

ICA-Internal Continuous Assessment

Note: 8 hours/week is meant for departmental assistance by students. **Industrial Training** (During inter semester holidays of 2nd & 3rd Semesters)

[Total Credits: 66]

SEMESTER I

Course	e No.	Course Name	L-T-P-Cred	its In	Year of troduction			
10EE6	5101	COMPUTATIONAL TECHNIQUES	3 - 1 - 0 : 4	L	2015			
Course P Basic k	rerequi nowledg	sites te of engineering mathematics at UG level.						
Course C To equ enginee	Course Objectives To equip the student with mathematical techniques necessary for computing applications in engineering systems							
Syllabus Introduc equation solution Simpley	Syllabus Introduction to numerical techniques. Numerical/analytical solution of ordinary differential equations and partial differential equations. Stability of the numerical methods. Iterative solutions. Matrix equations. Ill conditioning and norms. Linear and unconstrained optimization. Simplex methods. Spectral methods							
Expected Upon th	 Expected Outcomes Upon the completion of this course, students will have the ability: To solve equations using numerical iteration techniques including Newton's method, 							
•	To solv techniqu	re equations using numerical iteration technics, Eigenvalues etc	iniques inclue	ding Tria	ngularization			
•	To appl systems	ly numerical techniques for the solution o	f differential	equation	of dynamic			
• *	To use M To appl <u>y</u> To acqu	MATLAB/Scilab platforms for the solution of y numerical techniques for the solution of part ire knowledge of various unconstrained opima	equations ial differential ationsation	equation				
Text bool1.Erwin PressReference2.Bhasi3.Arfko Edition	 Text book: Erwin Kreyszig, Advanced Engineering Mathematics 9th Edition, Wiley International Edition Press, Numerical Recipes for scientific computing, References: Bhaskar Dasgupta, Applied Mathematical Methods, Pearson, Arfken, Weber and Harris, Mathematical Methods for Physicists, A comprehensive guide, 7th Edition, Elsevier, 2013 							
		Course plan						
Module		Content		Hours	Semester Exam Marks (%)			
I	Solutio method divided equatio differen	n of equations by iterations – Newton's meth l – interpolation – Lagrange interpolation l difference, forward difference, backward ons – spline interpolation – numeric inter- ntiation	od – secant – Newton's I difference gration and	10	15			
II	Gaussian elimination – LU factorization – Matrix inversion – Gauss-Siedel iteration – Ill conditioning and norms – least squares method – eigen value problems – power method for eigen values – Tridiagonalization and QR factorization1015							
		First Internal Examination	n					
III	Analyt: equation	ical and numerical solutions of ordinary ons representing physical systems – mass, spr	differential ing, damper	8	15			

	Cluster Level End Semester Examination					
		56	100			
	problems.					
VI	Unconstrained Optimization – single variable optimization – iterative methods – multivariate optimization – direct methods – steepest descent method – Newton's method – Linear programming problem – simplex method <u>Matlab/Scilab Laboratory sessions:</u> Simple optimization	10	20			
V	Parabolic PDE's: Heat equation – analytical and numerical solutions – Crank Nicholson method. Hyperbolic PDE's: Wave equation – analytical and numerical solutions – Lax Wendroff method Introduction to numerical spectral methods - <u>Matlab/Scilab Laboratory sessions:</u> Solution of heat and wave equations for different initial and boundary conditions.	10	20			
Second Internal Examination						
IV	 systems - RLC circuits – simple pendulum – inverted pendulum – Euler's forward difference, backward difference and symmetric methods – stability of Euler's methods – Runge Kutta methods – stability of Runge Kutta methods <u>Matlab/Scilab Laboratory sessions</u>: Numerical integration and differentiation. Euler's method and Runge Kutta methods for systems of linear and nonlinear differential equations PDEs: Elliptic, parabolic and hyperbolic Elliptic PDE's: difference equations for Laplace and Poisson Equations – Dirichlet, Neumann and Mixed problems – relaxation methods 	8	15			

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Course	e No.	Course Name	L-7 Cre	Γ-P- edits	Year of Introduction		
10EE6	5103	DESIGN AND ANALYSIS OF POWER ELECRONICS SYSTEMS	3 - 0	-0:3	2015		
Course F	Prerequi	sites		.1			
Basic K	Diectiv	e of Power electronics, and Network Analysis at U	G Leve	21.			
To develo	op design	n and analysis skills of Power Electronic Systems.					
Syllabus	5 5						
Switched	DC sou	rce with RL, RC and RLC load - half wave uncont	rolled r	ectifier ci	rcuit analysis-		
power sw	vitches- h	half wave controlled rectifiers - rectifier fed d.c. m	otor dr	ives- Cho	ppers –		
d.c.motor	r drives -	Magnetics design - AC inductor design - Thermal d	lesign				
Expected	1 Outcon	nes					
Upon the	complet	tion of this course, students will have the ability:	d rootif	iora with	different load		
•	ro anar	rs	u rectii	lers with	different load		
•	to analy	se the operation and performance of controlled half	wave	rectifiers			
•	to apply	controlled rectifiers for drive application	waver				
•	to analy	se various chopper circuits					
•	to design	n inductor and transformer for controller applicatio	ns				
•	to acqui	re knowledge on thermal design considerations					
Text boo	oks						
1. S	B Dewa	n,G R Slemon and A Straughen, "Power Semicond	uctor c	ircuits" -	- Wiley India		
20	009		60				
2. R	obert W	Erickson and Dragan Maksimovic, "Fundamentals	of Pow	ver Electr	onics",		
	pringer i Umanar	international, Second Edition 2009.	Wilev	India Pv	I td 2010		
4. L	Umanar	and and S P Bhat "Design of Magnetic Components	for Swi	itched Mo	de Power		
co	onverters	s" — New Age International, 1992.					
5. Jo	oseph Vit	thayathil, "Power electronics: Principles and Applie	cations'	" McGrav	v Hill		
E	ducation	, 2010.					
6. C	yril W L	ander, "Power Electronics" Tata McGraw Hill, Thi	rd Edit	ion, 1993	•		
		Course plan					
Module		Content		Hours	Semester Exam		
					Marks (%)		
	Switch	ed DC source with RL, RC and RLC load - recover	ery of				
I	trapped	l energy – RLC load with an ac sourceRectifier C	Circuit	8	15		
	analysi	s-Uncontrolled Half wave Rectifier.					
11	Models	s of power switches – Operation of thyristor-Cont	rolled	6	15		
	Half Wa	Eisst Internal Examination					
	Single	phase and three phase controlled rectifiers-Rectifi	er fed		T		
III	d.c mo	otor drive – dual converter – d.c. series motor	drive-	8	15		
	numeri	cal examples		0			
TX 7	Choppe	ers – analysis of type A, type B, four quadrant chor	per-	6	15		
10	d.c mot	tor drive	-	0	15		
		Second Internal Examination					
	Magnet	tics design – transformer modeling – loss mechani	sm in				
V	magnet	find devices – eddy currents in winding conduct	ors –	8 20			
	inducto	r design constraints – design procedure – m	sses – iltinle				
L	mauert	n design constraints design procedure – Int	pic		1		

	winding magnetics design – transformer design constraints – design procedure – AC inductor design					
VI	Thermal design – control of semiconductor device temperatures - various heat transfer modes, heat sink design. Numerical examples.	6	20			
		42	100			
Cluster Level End Semester Examination						

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Course	e No.	Course Name	L- Cr	T-P- edits	Year of Introduction
10EE (6105	ADVANCED MACHINE DRIVES	3 - 0	-0:3	2015
Course F	Prerequi	sites e in Electrical machines and Power electronics at II	G lev	ol	
Course (Dbjectiv	es	0 1010		
1. To gi 2. To de	ve an ide velop po	ea about the dynamics and control of conventional ar ower electronics based control for accurate speed cor	nd mo ntrol fo	dern elec or various	trical drives s applications
Syllabus	<u>, , , , , , , , , , , , , , , , , , , </u>				
Electric of	drive sy	stems- Dynamics- Rating and heating of motors-	DC o	drives- In	nduction motor
drives- S	ynchron	ous motor drives- Drives for specific applications	Contr	ol technic	ques of electric
drives- T	ransfer f	function and state variable representation of drive sy	ystem	s – Close	d Loop control
OI drives-	• Microp	rocessors based control			
1. U	nderstar	d basic requirements placed by mechanical systems	on ele	ectric driv	e.
2. T	o unders	stand and develop the speed controllers for the dc	moto	r drives	to satisfy four-
զւ	uadrant o	operation to meet mechanical load requirements.			-
3. T	o unders	tand and develop the speed controllers for induction	n mote	or drives	to satisfy four-
qı 4 T	ladrant (operation to meet mechanical load requirements.	nous	motor d	rives to setisfy
4. I	our-quad	rant operation to meet mechanical load requirements		motor u	lives to satisfy
5. A	ble to se	lect the electrical motor drives for various mechanics	al load	d applicat	tions in energy
ef	ficient r	nanner using power electronics.			
6. T	o unders	tand and develop controllers for electric motor drive	appli	cations.	
Text Boo	oks:				
1. Vedan	n Subra	hmanyam, "Electric Drives: Concepts & Appli	cation	is", 2nd	Edition, Tata
McGra	aw-Hill	Education, 2010.			
2. G. K.	Dubey,	"Fundamentals of Electric Drives" 2 nd Edition, Naros	sa Puł	olications	, 2002.
1 Lingd	es:	inchang Zhang and Yianghang Wang "AC Machine	Suct	ame" Snr	inger 2000
2. Rik D	De Donc	ker. Duco W J Pulle and Andre Veltman. " Advance	d Ele	ctrical D	rives: Analysis.
Mode	eling, Co	ntrol "1st Edition. Springer-verlag Gmbh, 2010.			, eet 1
		Course plan			
					Semester
Module		Content		Hours	Exam
	Dynan	nics of a drives. Elements of electric drives- Dyna	nics		Marks (%)
	of a dr	ive system –Components of load torques- Steady s	state		
т	stabilit	y.		0	15
1	Motor	power rating: Requirements of a drive motor – Po	ower	0	15
	losses,	Heating and Cooling of electric motor – Classes of	duty		
	and Se	lection of electric motor	talu		
I excited motor and Series motors drives- Single phase and three				6	15
	phase of	lrives- Chopper fed drives- Reversible drives-			10
	I	First Internal Examination			1
	Induct	ion motor drives: Stator Voltage control- R	otor		
III	resistai	nce control- Chopper control- Slip energy reco	very	8	15
	fed mo	tors- PWM drives- Field oriented control	COL		
J					1

IV	Synchronous motor drives : Variable frequency supply- Self control- VSI & CSI fed motors- Permanent magnet synchronous motors – Cyclo converter fed synchronous motor Drive circuits for stepper motor-switched reluctance motor drives	6	15					
Second Internal Examination								
V	Drive Applications: Drive considerations for textile mills, steel rolling mills, cranes and hoists, cement mills, sugar mills, machine tools, paper mills, coal mines, centrifugal pumps, turbo compressors- ac & dc drives- Traction Drives. Basics of solar powered pump drives and electric vehicles.	8	20					
VI	 Control techniques: Block diagram representation of drive systems – Transfer function and state variable representation of dc drive systems – Closed Loop control of drives- Torque, speed and position control schemes- Microprocessors based control: Application areas- Block diagram schemes for control of ac, dc drives and stepper motors – Aspects of microprocessor based control system design. 	6	20					
	<u> </u>	42	100					
	Cluster Level End Semester Examination							

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Course	e No.	Course Name	L- Cr	T-P- edits	Year of Introduction				
10EE6	5107	POWER CONVERTERS I	3 - 0	- 0 : 3	2015				
Course F	Prerequi	sites	1						
Basic knowledge of Power Electronic circuits and devices at UG Level.									
To develop solid foundation in analyzing DC DC and AC DC converters									
Syllabus	10 develop sond loundation in analyzing DC-DC and AC-DC converters Syllabus								
Line free	o Menev s	ingle phase and three phase AC-DC fully controlled	rectifi	erc Mult	i pulse AC-DC				
converter	$r_{\rm s}$ DC-C	C converters Resonant converters and switching por	wer si	innlies	i puise AC-DC				
Expected	l Outcou	mes		ippnes.					
1. Acc	uire kno	owledge about fundamental concepts of harmonic st	tandaı	ds and it	s effect on AC				
sup	plv.		. un uu	us una n					
2. Abi	lity to a	nalyze various Resonant DC-DC converts used in po	wer el	lectronics					
3. Abi	ility to a	nalyze various DC-DC converts used in power electro	onics	for vario	us applications.				
4. Abi	ility to a	analyze various Switched mode DC-DC converts u	ised i	n power	electronics for				
vari	ious app	lications.		-					
5. Abi	ility to d	evelop and analyze the PFC rectifier converters for v	arious	s applicat	ions.				
6. Fos	ter abili	ty to understand the use of power converters in	n cor	nmercial	and industrial				
app	lications)							
Text boo	oks				_				
1. N	ed Moh	an, T M Undeland and William P Robbins, "Po	ower	Electroni	cs Converters,				
A	pplicatio	on And Design", 3rd Edition, John Wiley & Sons, 20	03						
2. M	I D Sing	h and Khanchandani, "Power Electronics" 2nd Editio	on, Ta	ta Mcgra	w Hill, 2006.				
3. R	obert V	Erickson and Dragan Maksimovic, "Fundamer	ntals	of Powe	r Electronics",				
	pringer i	nternational, Second Edition 2009.	A	aatioma"	MaCrow Hill				
4. JC	osepn v	2010	Appn	cations	McGraw Hill				
	uucation	, 2010. ander "Dewer Fleetrenies" Tete McCrew Hill Third	I Edit	ion 1002					
5. C	yrii w L ang Lin	Luo and Hong Ve. "Renewable energy systems adva	i Euli inced	conversio	In technologies				
	Applie	ations" CRC Press 2012	inceu	conversio	on technologies				
a a	, rippile	alons , exe 11633, 2012.							
		Course plan							
					Semester				
Module		Content		Hours	Exam				
					Marks (%)				
	Curren	t harmonics in rectifiers – harmonic standards – Sin	ngle						
т	phase a	and three phase fully controlled rectifiers - power fac	ctor,	8	15				
1	Total h	armonic distortion, displacement power factor- Effect	ct of	0	15				
	source	inductance on current commutation.							
II	Decen	at DC DC convertence load reconcret converte							
	Resona	in DC-DC converters – load resonant converter	rs –						
	resonal	topological measure de link invertere with	iped	6 15					
	voltage	e topologies – resonant de link inverters with a		0	10				
	voltage	tora	ycie						
First Internal Examination									
	DC-D	C converters (CCM&DCM operation) : Buck conver	rter-	0	15				
	Boost	converter- Buck boost Converter- Cuk converter - L	LUO	8					
	conver	ter – SEPIC converter							

IV	Switching DC Power Supplies – Forward, flyback, pushpull, half bridge and full bridge converter circuit, operation, waveforms and design, small signal analysis of DC-DC converters and closed loop control – transfer function of dc-dc converters – stability analysis	6	15					
	Second Internal Examination							
V	PFC converters: Multiple converter – Boost PFC rectifiers- Vienna rectifiers – Third harmonic injection techniques – Minnesota rectifiers – Modeling and simulation of all rectifiers.	8	20					
VI	Applications: Residential and industrial applications of power electronics – induction heating, welding, electronic ballast – utility applications - back to back HVDC transmission, UPS, static var compensators and active filters.	6	20					
		42	100					
	Cluster Level End Semester Examination							

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Course	e No.	Course Name	L-T-P- Credits	Year of Introduction
10EE6	5113	SPECIAL MACHINES	3 - 0 - 0 : 3	2015
Course P Basic k	rerequ inowleds	isites ge of Electrical Machines at UG Level.		
Course ()biectiv	es		
To impar	t knowle	edge about special machines		
Syllabus	5			
Stepper 1	notor, S	ervomotor, Synchronous Reluctance motor, Switched	reluctance m	otor,
Permaner	nt magne	et BLDC motor & PMAC Motor, Linear Induction mot	or.	,
Expected	l Outco	mes		
At the end	of the c	ourse students will be able:		
•	To anal	yse the operation and control of stepper motor		
•	To acqu	ire knowledge on the construction and operation of bo	th ac and dc	servomotor
•	To com	pare the functioning of various types of synchronous re	eluctance mo	tors
•	To desc	ribe the operation and features of switched reluctance	notors	
•	To anal	yse the characteristics and control of different types of	permanent n	agnet motors
•	To acqu	ire basic knowledge on the linear induction motor	1	e
Text boo	ks			
1. T.J.E.	Miller	, Brushless Permanent-Magnet and Reluctance	Motor Driv	es, Clarendon
Press,1	989.			
2. R.Kris	hnan, S	witched Reluctance Motor Drives-Modelling, Simula	tion, Analys	is, Design and
applica	ation, Cl	RC press New York,2001		
3. T. Ken	ijo, 'Stej	pping Motors and Their Microprocessor Controls', Cla	rendon Press	London, 1984.
4. T.J.E.	Miller,	Switched Reluctance Motors And Their Control,	Magna phys	ics Publishing,
Oxford	i, 1993.			
5. T.J.E.	Miller, 1	Electronic Control of Switched Reluctance Machines,	Newnes Pow	er Engineering
Series,	2001.			
6. Vincer	nt Del T	oro, Electric Machines and Power Systems, Prentice H	all,1985.	
7. M D D	Desai, Co	ontrol system components, PHI Learning, 2008.		
8. K Ven	kataratn	am, Special Electrical Machines, Orient Blackswan Pv	t LtdNew I	Delhi, 2008
9. R Kris	hnan, E	lectric Motor Drives, Modeling, Analysis, and control,	PHI Learnii	ig, 2001
10. N	asar S.A	., Boldea I., Linear Motion Electric Machine, John Wi	ley & Sons,	1976.
		Course plan		
				Semester
Module		Content	Hours	Exam
				Marks (%)
	Steppe	er motor: Constructional features - Principle	of	
	operati	on-permanent magnet stepper motor - variab	ole	
Ι	relucta	nce motor - hybrid motor-single and multi sta	ck 8	15
	configu	urations - Torque equations - modes of excitations	-	_
	drive	circuits-microprocessor control of stepping motors	-	
	closed	loop control – applications.	<u> </u>	
II Servomotor: DC servomotors- construction - principle of				
	operati	¹⁰¹ 6	15	
	- AC S	servomotor-construction - theory of operation - shad	ea	
	pole ac	servomotors – applications.		
	Sunah	ranous Deluctorea motor: Constructional features		
тт	Types	Dringiple of operation A vial and radial flux mate		15
111	i ypes	- Trinciple of operation - Axiai and fadiat nux moto	ns 0	

- operating principles - variable reluctance motor - hybrid

	motor - voltage and torque equations – characteristics –		
	applications.		
IV	Switched reluctance motor : Constructional features - principle of operation - torque production - steady state performance prediction-Analytical method - Power converters and their controllers - Methods of rotor position sensing - Closed loop control of SRM – Characteristics – applications.	6	15
	Second Internal Examination		
V	Permanent magnet motor: Permanent magnet brushless DC motors - Permanent magnetic materials - Magnetic characteristics - Principle of operation -Types-Magnetic circuit analysis - Torque equations - Power controllers - Motor characteristics and control, Permanent magnet synchronous motors-Principle of operationTorque equations- characteristics and control.	8	20
VI	Linear Induction motor Linear induction motor- Double sided linear induction motor from rotary type Induction motor – Scheme of LIM drive for electric traction – development of single sided LIM – Equivalent circuit- applications.	6	20
		42	100
	Cluster Level End Semester Examination	•	

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Course N	lo.	Course Name	L-T-P-Credits	Year of I	ntroduction	
10EE 61	15	COMPUTER AIDED DESIGN OF ELECTRICAL MACHINES	3 - 0 - 0 : 3	2	2015	
Prerequisite	Prerequisite: Knowledge about design of electrical machines					
Course Obj	ectives	5 5				
To introduce	e the te	chnique of Finite Element Methods in	the area of electric	al machine	25	
Syllabus						
Computer ai	ided de	esign of electrical machines - Analysi	is and synthesis me	thods	Mathematical	
Formulation	of Fie	ld Problems-Development of torque/fo	orce - E - Electrical	Vector/Sc	alar potential	
- Stored en	ergy in	n field problems – Inductances - La	aplace and Poissor	n's Equation	ons - Energy	
functional -	Princir	ble of energy conversion. Philosophy	of FEM- Finite Dif	ference me	ethod - Finite	
Element Me	ethod -	- Energy minimization - Variational	method - 2D Fiel	ld problen	ns - Solution	
techniques.C	CAD Pa	ackages - Setting up solution - Post p	processing. Design	Applicatio	ons-Design of	
Solenoid Ac	tuator	- Induction Motor - Switched Reluctar	nce Motor – Synchr	onous Mac	chines.	
Course Out	come					
At the end of	f cours	e, the student will be able to:				
 Basic 	c conce	ept of electric machine				
• Appl	y FEM	I methods for field plotting				
 Designation 	gn elec	tromagnetic machines				
References						
1. S J Sa	lon, "F	Finite Element Analysis of Electrical	Machines", Kluwe	r Academi	c Publishers,	
Londo	n, 1995	5.				
2. Vlado	Ostovi	c, "Computer Aided Analysis of Electr	ric Machines", PHI	(UK) Ltd,	1994.	
3. Silvest	er and	Ferrari, "Finite Elements for Electrica	al Engineer", Cam	bridge Uni	versity Press,	
1983.	IT TT.				·	
4. 5 K	H H00	ble, Computer-Aldea, Analysis and	a Design of Elec	tromagnet	ic Devices,	
5 DAI	owthe	r. P. P.Silvester. "Computer Aided Des	sian in Magnetics"	Springer	Verlag New	
York	1986	, i i biivestei, computer mutu Des	sign in magneties	, opinger	veriag, riew	
6. M Ran	namoo:	rthy, "Computer Aided Design of Ele	ectrical Equipments	s". Affiliat	ed East West	
Press, 2	2008.	,, , , , , , , , , , , , , , , , , , ,	1 1	,		
7. C W T	Frowbr	idge, "An Introduction to Computer	Aided Electromag	netic Anal	ysis", Vector	
Field L	.td, 199	90.				
8. Chee-N	Mun O	ng, "Dynamic Simulations of Electric	Machinery: Using	MATLAB/	SIMULINK",	
Prentic	e Hall,	, 1998.		~		
9. User M	Ianual.	s of Software Packages like MAGNET	, ANSOFT& ANSYS	S.		
10. Chee-M	Aun Oi	ng, "Dynamic Simulations of Electric	Machinery: Using	MATLAB/	SIMULINK",	
Prentic	ce Hall	, 1998.				
		COURSE PLA	N			
					Semester	
Module		Contents		Hours	Exam	
					Marks %	
	Comp	outer aided design of electrical machin	nes - Conventional			
	design	n procedures - Analysis and synt	thesis methods -			
T	Limita	ations - Need for field analysis	s based design	8	15	
-	Mathe	ematical Formulation of Field Problem	ns-Development of	Ŭ		
	torque	e/torce - Electromagnetic Field Equa	ations - Magnetic			
	Vecto	r/Scalar- potential	1			
II	Electr	ical Vector/Scalar potential - Store	a energy in field	6	15	

problems - Inductances - Laplace and Poisson's Equations -

	Energy functional - Principle of energy conversion.			
FIRST INTERNAL EXAM				
III	Philosophy of FEM- Mathematical Models - Differential/Integral equations - Finite Difference method - Finite Element Method	8	15	
IV	Energy minimization - Variational method - 2D Field problems - Discretisation- Shape functions - Stiffness matrix - Solution techniques.	6	15	
SECOND INTERNAL EXAM				
V	CAD Packages-Elements of a CAD System - Preprocessing - Modeling - Meshing -Material properties - Boundary Conditions - Setting up solution - Postprocessing.	8	20	
VI	Design Applications-Design of Solenoid Actuator - Induction Motor - Switched Reluctance Motor – Synchronous Machines-case studies.	6	20	
ESE 42				

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Course No	. Course Name	L-T Cree	-P- dits	Year of Introduction
10EE6117	POWER QUALITY ISSUES AND REMEDIAL MEASURES	3 - 0-	0:3	2015
Course Pr	erequisites	ot UC I		
Course Of	iectives		Level.	
To give t	ne Student:-			
• A	n introduction to various power quality problems in the e	lectrical	power sy	ystems.
• A	nalyse the power quality problem and identify the remedi	al measu	ures.	
• D	esign and development of power electronics based solution	ons to po	ower qual	lity problems.
Syllabus				
Introduct	on to power quality- power quality measures and s	tandards	s- Impor	tant harmonic
introduci	ng devices- Harmonics and measurements-Power quality	ty Impro	ovement-	DSTATCOM-
DVR-UP	QC- Active Power Factor Correction.			
Exported	Dutaomas			
1. Stu	dents who successfully complete this course will have de	nonstrat	ed an abi	ility to
con	prehend the various power quality problems in the electr	ical syste	ems	
2. The	students will be able to identify and analyse important ha	armonic	introduc	ing devices
3. The	students will be able to understand harmonics and measu	irement	of harmo	nics.
4. Ap	ply the basics of electrical engineering to identify the rem	nedial me	easures to	o power
qua 5 De	sign and development of the remedial measures to power	anality	problems	using series
and	hybrid connected compensators.	quanty	problems	using series
6. Des	ign and development of the remedial measures to power	quality p	oroblems	using Active
Pov	ver Factor Correction			
	ICES:	100	4	
	Heydt, Electric Power Quality, Star in a circle publication an Electric Power Systems Quality, Magraw Hill Education	ns, 1994 tion 201	+ 12	
3. KR	Padivar, FACTS controllers in Power Transmission and	Distribu	ition. Nev	w Age
pub	lications, New Delhi, 2007.		, , ,	0
4. R S	astry Vedam, power quality VAR compensation in power	system:	s, CRC p	oress,
Nev	vYork, 2009.	,		
J. AC Pre	$\frac{1}{1000}$ and G Ledwich, power quality improvement using $\frac{1}{1000}$	g custon	n power d	ievices, IEEE
6. Nec	Mohan, T M Undeland and William P Robbins, "	Power I	Electronic	cs Converters.
Арг	lication And Design", 3rd Edition, John Wiley & Sons, 2	2003		,
	Course plan			
			**	Semester
Module	Content		Hours	Exam Marks (%)
]	ntroduction -power quality-voltage quality-overview	v of		
	ower quality phenomena classification of power q	uality		
I I	ssues-power quality measures and standards-THD-TIF-D	DIN-C	8	15
1	nessage weights-flicker factor-transient phenor	nena-	0	15
	occurrence of power quality problems power accepta	adility		
1	mportant harmonic introducing devices- SMPS-	Three	6	
	hase power converters – arcing devices- saturable de	vices-	-	15

	fluorescent lamps, effect of power system harmonics on		
	aquinment and loads		1
	First Internal Examination		
	Balancing of source currents- Steinmetz network.		1
	Harmonics and measurements: Power factor reduction due to		15
III	harmonics-Distortion power-distortion power factor and	8	15
	displacement power factor- Triplen harmonics. Power Quality		1
	Analysers-Voltage, Current, Power and Energy measurements		l
	Power quality Improvement:-DSTATCOM for Harmonic		
	Filtering reactive power compensation and load balancing.		1
IV	a domain control and IPPT control of three phase	6	15
	q domain control and IKP1 control of three phase		1
	DSTATCOM- Three-phase four-wire systems.		
	Second Internal Examination		
	Dynamic Voltage Restorers for sag, swell and flicker		
• 7	Dynamic Voltage Restorers for sag, swell and flicker problems – structure and control- Series active power filtering	0	20
V	Dynamic Voltage Restorers for sag, swell and flicker problems – structure and control- Series active power filtering techniques for harmonic cancellation and isolation-	8	20
V	Dynamic Voltage Restorers for sag, swell and flicker problems – structure and control- Series active power filtering techniques for harmonic cancellation and isolation- Uninterruptible power supplies-constant voltage transformers	8	20
V	Dynamic Voltage Restorers for sag, swell and flicker problems – structure and control- Series active power filtering techniques for harmonic cancellation and isolation- Uninterruptible power supplies-constant voltage transformers	8	20
V	Dynamic Voltage Restorers for sag, swell and flicker problems – structure and control- Series active power filtering techniques for harmonic cancellation and isolation- Uninterruptible power supplies-constant voltage transformers UPQC: Structure and control-Left shunt UPQC-Right shunt	8	20
V	Dynamic Voltage Restorers for sag, swell and flicker problems – structure and control- Series active power filtering techniques for harmonic cancellation and isolation- Uninterruptible power supplies-constant voltage transformers UPQC: Structure and control-Left shunt UPQC-Right shunt UPQC	8	20
V VI	Dynamic Voltage Restorers for sag, swell and flicker problems – structure and control- Series active power filtering techniques for harmonic cancellation and isolation- Uninterruptible power supplies-constant voltage transformers UPQC: Structure and control-Left shunt UPQC-Right shunt UPQC Active Power Factor Correction: Single Phase Front End,	8	20
V VI	Dynamic Voltage Restorers for sag, swell and flicker problems – structure and control- Series active power filtering techniques for harmonic cancellation and isolation- Uninterruptible power supplies-constant voltage transformers UPQC: Structure and control-Left shunt UPQC-Right shunt UPQC Active Power Factor Correction: Single Phase Front End, Control Methods for Single Phase APFC, Three Phase APFC	8	20
V VI	Dynamic Voltage Restorers for sag, swell and flicker problems – structure and control- Series active power filtering techniques for harmonic cancellation and isolation- Uninterruptible power supplies-constant voltage transformers UPQC: Structure and control-Left shunt UPQC-Right shunt UPQC Active Power Factor Correction: Single Phase Front End, Control Methods for Single Phase APFC, Three Phase APFC and Control Techniques.	8	20
V VI	Dynamic Voltage Restorers for sag, swell and flicker problems – structure and control- Series active power filtering techniques for harmonic cancellation and isolation- Uninterruptible power supplies-constant voltage transformers UPQC: Structure and control-Left shunt UPQC-Right shunt UPQC Active Power Factor Correction: Single Phase Front End, Control Methods for Single Phase APFC, Three Phase APFC and Control Techniques.	8 6 42	20 20 100

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Course	No.	Course Name	L-T-P-Credits	Year of Introduction		
10EE62	203	SYSTEM THEORY	3 - 0- 0 : 3	2015		
Course F Basic k	Prerect nowle	quisites				
Course (Object	tives				
To give t	he Stu	ident:-				
• A found	lation	in the fundamentals of control system and contro	llers.			
• To deve	elop ai	n application of controlles in real time.				
• Optimal	l conti	rol design of various systems.				
Syllabus	5					
Fundame	ental c	concepts and overview; State variables ;State spac	e analysis of disc	crete systems;		
Lyapuno	v's sta	bility analysis; Krasovski's theorm; Controllabili	ty and observabi	lity in canonical		
form; Op	timal	control design using Lyapunov's method; Riccatt	ic equations for o	optimal control;		
Analysis	and co	ontrol of Robust control systems.	-	-		
Expected	d Out	comes				
Student	ts who	successfully complete this course will have dem	onstrated an abil	ity		
•	To an	alyse the system performance of state space mode	els			
•	To ap	ply Liapunov stability analysis for both linear and	d nonlinear system	ms		
•	To ac	quire knowledge on the controllability and observ	ability			
•	To ide	entify and formulate various optimal control prob	lems			
•	To so	lve various optimal control problems				
•	To se	lect performance measures				
•	To ac	quire knowledge of robustness of control systems	5			
Text Boo	oks:	· · · · ·				
1. 0	gata I	K., Modern control Engg, (second edition)Prentice	e Hall Inc.1990			
2. O	gata I	K., Discrete time control systems, Prentice Hall In	c.1995.			
3. G	opal N	M., Digital Control and state variable methods, TM	MH,1997			
Reference	es:					
4. <i>O</i>	gata I	K., Modern control Engg, (second edition)Prentic	e Hall Inc.2015	10 11.1 0010		
5. <i>K</i>	ichard	t C. Dorf and Bishop R.I., Modern Control System	<i>n</i> , Prentice Hall;	12 edition, 2010.		
		Course plan				
Module		Content	Hours	Semester Exam		
mouule		Content	nouis	Marks (%)		
	State	e variable representation of system -concept of s	tate -			
	Equi	librium points -Stability-Solution of state equat	tion -			
I	eiger	n values -eigen vectors -modes -modal decompos	sition 8	15		
	-eige	en value and stability- State space representation	on of			
	disci	rete time systems -Discretization of continuous	time			
	state	equation.				
11	Lyap	punov stability -definition of stability, asymp	ptotic			
	stabi	lifty and instability -Lyapunov's second metric	100 -	15		
	Lyapunov's stability analysis of L11 continuous time and 6 15					
	disci	rete time systems-stability analysis of non	linear			
	syste	EIII - Krasovski s theorem - variable gradient metho First Internal Examination	Dd.			
	Con	rnst internal Examination	XV _			
	Cont	rollability and observability tests for continuous	y -			
ш	and	discrete time systems -controllability and observa	hility 8	15		
	studi	ies based on canonical forms of state model effe	ect of			
	state	e feedback on controllability and observability -	pole			

	placement by state feedback for continuous and discrete			
	time systems.			
	Optimal control -formulation of optimal control problem -			
IV	problem -minimum fuel problem -state regulator problem -	6	15	
	output regulator problem - tracking problem.			
	Second Internal Examination			
	Choice of performance measure -optimal control based on			
V	quadratic performance measure -optimal control system	8	20	
	design using second method Lyapunov -solution of			
	Design of full order and reduced order observer for			
	continuous time and discrete time systems Robust control		• •	
VI	systems -introduction -sensitivity analysis of robustness -	6	20	
	system with uncertain parameters -design of robust PID			
	controlled systems.			
		42	100	
Cluster Level End Semester Examination				

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Course	e No.	Course Name	L-T- Cred	-P- lits	Year of Introduction	
10EC6	5105	ADVANCED DIGITAL SIGNAL PROCESSING	3 - 0 -	0:3	2015	
Course F	Prerequ	isites				
(1) Basic I	knowledg	ge in signals and systems at UG level;				
Course (Objectiv					
(1) To atta	ain a goo	d analytical ability in digital filter design:				
(2) To inv	estigate (he applications of digital signal processing.				
Syllabus	-					
Review of	ftransfor	ms, Z-Transform, Discrete Time Fourier Transform (DT)	FT), Disc	rete Fou	rier	
Transform	n (DFT),	Discrete Cosine Transform (DCT), Short Time Fourier T	ransform	(STFT)	, LTI systems	
as frequen	EID filt	ive filters, Invertibility of LTI systems, Design of digital	filters by	v placem	ent of poles	
method F	requency	y sampling method Finite word length effects. Design of	IIR filter	s Pole z	ero	
placement	. Impuls	e invariance, Bilinear Z transformation, Finite word lengt	h effects.	, Adaptiv	ve Digital	
Filters, W	iener filt	er, LMS adaptive algorithm, Recursive least squares algo	rithm, Po	wer Spe	ctrum	
Estimation	n, Estima	tion of spectra from finite-duration signals, Non-paramet	ric and P	arametri	c methods for	
Power Spe	ectrum E	stimation.				
Expected The stude	Outcom	es				
(1) Attain	a good a	nalytical ability in digital filter design:				
(2) Know	various a	applications of digital signal processing.				
Reference	es:					
1. Pr	roakis an	d Manolakis, Digital Signal Processing: Principles, Algo	orithms, a	nd Appl	<i>ications</i> , 4/e,	
Pe	earson Ec	lucation, 2007.				
2. If	eachor ai	nd Jervis, Digital Signal Processing, A practical Approact	h, 2/e, Pe	earson E	ducation, 2002.	
3. Jo	hnny R.	Johnson, Introduction to Digital Signal Processing, PHI,	, 1992.	IF	2007	
4. A	snok Am	Dardar, Digital Signal Processing: A Modern Introduction	m, Thoms	son, IE,	2007. Acadomic	
J. D. Pr	ougias r. ress 1979) Hilott, Hanabook of Digital Signal Processing- Engined	ering App	nication	, Academic	
6. R	obert J. S	chilling and Sandra L. Harris, Fundamentals of Digital S	Signal Pro	ocessing	using	
M	ATLAB,	Thomson, 2005.				
7. In	gle and J	. G. Proakis, Digital Signal Processing Using MATLAB,	Thomson	n, 1/e,19	99.	
		Course plan				
					Semester	
Module		Content		Hours	Exam	
					Marks	
	Review	of transforms : Z-Transform, ROC, Poles & Zeros, Dis	screte			
	DFT as	a linear transformation. Frequency analysis of signals ar	DF1),			
	systems	s using DFT. Discrete Cosine Transform (DCT). Short Ti	ime			
Ι	Fourier	Transform (STFT).		8	15	
	LTI sy	stems as filters : Invertibility of LTI systems, Minimum	phase,			
	Maxim	um phase and mixed phase systems, All-pass filters, Desi	ign of			
	digital filters by placement of poles and zeros, Linear filtering methods					
	Dased of Digital	II DF1. Filter Structures : Generalized input output relationship				
	Transfe	r Function FIR Transfer Function Signal Flow Graphs	FIR			
	filter st	ructures, Direct Form-I, Direct Form-II, Frequency Same	oling,	6	1.7	
11	Cascad	e, Lattice, IIR filter structures, Direct Form-I, Transposed	i,		15	
	Direct l	Form-II, Canonical, Parallel, Cascade, Lattice-Ladder				
	structur	es.				
	First Internal Examination					

ш	Design of FIR filters : Linear Phase Systems, Specifications, Coefficient calculation methods, Desired impulse responses, Window method, Frequency sampling method, Comparison of methods, Filter realization, Finite word length effects, Implementation examples, FIR filter design using Octave/ MATLAB.	8	15
IV	Design of IIR filters : Specifications, Coefficient calculation method, Pole zero placement, Transformation rules, Impulse invariance, Bilinear Z transformation (BZT), Butterworth and Chebyschev approximations, Filter realization, Finite word length effects, Implementation examples, IIR filter design using Octave/ MATLAB.	6	15
	Second Internal Examination		
V	Adaptive Digital Filters : Concepts, Wiener filter, LMS adaptive algorithm, Recursive least squares algorithm, Lattice Ladder filters, Application of Adaptive filters.	8	20
VI	Power Spectrum Estimation : Estimation of spectra from finite duration signals, Non-parametric and Parametric methods for Power Spectrum Estimation	6	20
	TOTAL	42	100
Cluster Level End Semester Examination			

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Course No.	Course Name	L - T - P - Credits	Year of Introduction
10GN6001	RESEARCH METHODOLOGY	0 - 2 - 0 : 2	2015

Course Prerequisites

(1) Basic skill of analyzing data earned through the project work at UG level;

(2) Basic knowledge in technical writing and communication skills earned through seminar at UG

level.

Course Objectives

(1) To attain a perspective of the methodology of doing research;

(2) To develop skills related to professional communication and technical report writing.

As a tutorial type course, this course is expected to be more learner centric and active involvement from the learners are expected which encourages self-study and group discussions. The faculty mainly performs a facilitator's role

Syllabus

Overview of research methodology - research process - scientific methods -research problem and design - research design process - formulation of research task, literature review and web as a source - problem solving approaches - experimental research - ex post facto research. Thesis writing - reporting and presentation - interpretation and report writing - principles of thesis writing- format of reporting, oral presentation - seminars and conferences, Research proposals - research paper writing - publications and ethics - considerations in publishing, citation, plagiarism and intellectual property rights. Research methods – modeling and simulation - mathematical modeling – graphs - heuristic optimization - simulation modeling - measurement design – validity – reliability – scaling - sample design - data collection methods and data analysis.

Expected Outcomes

The students are expected to :

- (1) Be motivated for research through the attainment of a perspective of research methodology;
- (2) Analyze and evaluate research works and to formulate a research problem to pursue research;

(3) Develop skills related to professional communication, technical report writing and publishing papers.

References

- 1. C.R Kothari, *Research Methodology: Methods & Techniques*, New Age International Publishers, 2004.
- 2. R. Panneerselvam, Research Methodology, Prentice Hall of India, New Delhi, 2012.
- 3. K. N. Krishnaswamy, Appa Iyer Sivakumar, and M. Mathirajan, *Management Research Methodology, Integration of Principles*, Pearson Education, 2009.
- 4. Deepak Chawla, and MeenaSondhi, *Research Methodology Concepts & Cases*, Vikas Publishing House, 2011.
- 5. J.W. Bames, Statistical Analysis for Engineers and Scientists, McGraw Hill, New York, 1994.
- 6. Schank Fr., *Theories of Engineering Experiments*, Tata McGraw Hill Publication.
- 7. Willktnsion K. L, Bhandarkar P. L, Formulation of Hypothesis, Himalaya Publication.
- 8. Douglas C Montgomery, Design and analysis of experiments, Wiley International
- 9. Ranjit Kumar, Research Methodology: A step by step guide for beginners, Pearson Education.
- 10. Donald Cooper, Business Research Methods, Tata McGraw Hill, New Delhi.
- 11. Leedy P D, *Practical Research : Planning and Design*, 4th Edition, N W MacMillan Publishing Co
- 12. Day R A, How to Write and Publish a Scientific Paper, Cambridge University Press, 1989
- 13. Coley S M and Scheinberg C A, Proposal Writing, 1990, Newbury Sage Publications.
- 14. Sople, Managing Intellectual Property: The Strategic Imperative, Prentice Hall of India,

New Delhi, 2012

- 15. Manna, Chakraborti, Values and Ethics in Business Profession, Prentice Hall of India, New Delhi, 2012.
- 16. Vesilind, Engineering, Ethics and the Environment, Cambridge University Press.
- 17. Wadehra, B.L. Law relating to patents, trademarks, copyright designs and geographical indications, Universal Law Publishing

Course plan				
Module	Content	Hrs	Semester Exam Marks (%)	
Ι	Overview of Research Methodology : Research concepts, meaning, objectives, motivation, types of research, research process, criteria for good research, problems encountered by Indian researchers, scientific method, research design process.	5	15	
п	Research Problem and Design : Formulation of research task, literature review, methods, primary and secondary sources, web as a source, browsing tools, formulation of research problems, exploration, hypothesis generation, problem solving approaches, introduction to TRIZ (TIPS), experimental research, principles, laboratory experiment, experimental designs, ex post facto research, qualitative research.	5	15	
	First Internal Examination	•		
ш	Thesis Writing, Reporting and Presentation : Interpretation and report writing, techniques of interpretation, precautions in interpretation, significance of report writing, principles of thesis writing, format of reporting, different steps in report writing, layout and mechanics of research report, references, tables, figures, conclusions, oral presentation, preparation, making presentation, use of visual aids, effective communication, preparation for presentation in seminars and conferences.	4	15	
IV	Research proposals, Publications, Ethics and IPR : Research proposals, development and evaluation, research paper writing, layout of a research paper, journals in engineering, considerations in publishing, scientometry, impact factor, other indexing like h-index, citations, open access publication, ethical issues, plagiarism, software for plagiarism checking, intellectual property right (IPR), patenting case studies.	5	15	
	Second Internal Examination	1		
V	Kesearch Methods - Modeling and Simulation : Modeling and simulation, concepts of modeling, mathematical modeling, composite modeling, modeling with ordinary differential equations, partial differential equations (PDE), graphs, heuristics and heuristic optimization, simulation modeling.	5	20	
VI	Research Methods - Measurement, Sampling and Data Acquisition : Measurement design, errors, validity and reliability in measurement, scaling and scale construction, sample design, sample size determination, sampling errors, data collection procedures, sources of data, data collection methods, data preparation and data analysis.	4	20	

Three internal tests, each having 20 marks summing to a total of 60 marks Tutorials / Assignments / Course Seminars summing to a total of 40 marks

10EE 6109	SEMINAR-I	0-2-0:2	2015		
Course Objective	es				
The basic objectiv	e of this course is to improve the oral co	ommunication skill	of the students.		
Syllabus	v				
Individual student	s are required to choose a topic of the	ir interest in consu	ltation with faculty and		
present for abou	t 30 minutes. They will be guided	l about sound me	odulation, sequence of		
presentation, eye	contact and writing on the black board.				
Students have to s	submit a report on the topic in the prese	ribed format.			
Expected Outcom	nes				
Upon the comple	etion of this course, students will have	the ability:			
• To enhar	nce the reading ability required for the l	literature review			
• To ident	ify hot research topics in the relevant fi	eld			
• To analy	ze technical problems in a critical way;				
To devel	op skills regarding professional comm	inication			
• To write	technical reports				
To make	effective power point presentation				
Internal Continu	uous Assessment: 100 marks				
Presentation	n (Verbal & Nonverbal Communication sk	ills) : 20 Marks			
Breadth of	the topic (Coverage : Content of the slides	and speech) : 20 Mar	`ks		
Depth of kn	nowledge (Ability to answer questions) : 30) Marks			
Seminar Re	Seminar Report in the prescribed format given by the Institution : 30 marks				

Course	No.	Course Name	L-T-P-Credits	Year of Introduction			
10EE6	111	POWER ELECTRONICS LAB	0-0-2:1	2015			
Course P	Prerequ	uisites					
Basic K	nowlec Directi	lge of Power Electronics at UG Level.					
To desi	on and	develop power electronic converters					
Svllabus	<u>gn and</u>	develop power electronic converters.					
• A	C-DC	Converters					
• D	C-DC	Converters					
• D	C-AC	Converters					
• A	C-AC	converters					
Expected	l Outco	omes					
Upon th	he com	pletion of this course, students will have the abili	ty to:				
•	Design	and implement various DC-DC chopper circuits					
•	Analys	e the performance of both 1-ph and 3-ph AC-DO	C converters				
•	Compa	are the performance of various 1-ph and 3-ph DC	-AC inverters				
•	Develo	p cycloconverters					
•	Develo	p various control schems including PWM					
•	Model	and analyse the performance of controllers in M	ATALB type plat	forms			
•	Familia	arize with harmonic analysis for power quality st	udies				
1 D	ces	Nectronics Converters Application And Design	n Ned Mohan	T M Undeland			
I. FO	Jilliam	P Robbins John Wiley & Sons 2003	ii – Neu Moliali,	i wi Underand,			
2. Po	ower E	lectronics – M D Singh, Khanchandani, 2nd Edit	ion. Tata Mcgraw	' Hill			
3. Fi	undame	entals Of Power Electronics, Second Editio	n, Robert W E	Erickson, Dragan			
Μ	laksimo	ovic, Kluwer Academic Publishers					
4. Po	ower E	lectronics Principles And Applications – Joseph	Vithayathil – Tata	ı Mcgraw Hill			
5. Po	ower E	lectronics – Cyril W Lander – Tata Mcgraw Hill					
		Course Plan					
Sl. No.		Experiments					
	Study	the performance of a single-phase half wa	ve and full wav	e AC-DC phase			
	contro	olled converter. Record AC supply voltage	and current wav	eform, harmonic			
1	spectr	rum, THD, crest factor, rms value, distortion fac	tor, displacement	factor and power			
	factor, output DC voltage average value, peak-peak ripple and ripple factor for various						
2	Study	the performance of a three-phase bridge rectified	•				
	Study	the performance of 12-pulse and 24-pulse	uncontrolled th	ree-phase bridge			
3	rectifi	ers.		1			
	Study	the performance DC- DC step down Chopper i	n the open loop a	nd record the DC			
4	supply	y voltage, supply current, load voltage and load	current, device vo	oltage and current			
	in Res	sistive load and DC motor load.					
5	Study	the performance DC- DC buck converter in CCl	M and DCM mode	ð.			
6	Study	the performance DC- DC boost converter in CC	M and DCM mod	le.			
7	Study	the performance DC- DC buck-boost converter	in CCM and DCM	I mode.			
	Study	the performance of a DC-AC single-phase inver	ter with triangular	carrier PWM			
8	Contr	oi. At voitage and current waveform, harmonic	spectrum, THD, c	rest factor, rms			
	value,	and waveform in DC- ΔC single-phase inverter	iacioi, input DC	current average			
	Study	the performance of a DC-AC three-phase inverter.	er with 120 degre	e and 180 degree			
9	9 conduction. AC supply voltage and current waveform, Harmonic spectrum. THD. cres						

	factor, rmsvalue, distortion factor, displacement factor and power factor, input DC						
	current average value and waveform.						
10	Study the performance of a DC-AC three-phase inverter with PWM control.						
	Study the performance of single-phase AC voltage controllers with (i) resistive (R),						
	(ii) resistive-inductive (R-L) and (iii) single-phase motor loads at two firing angles. AC						
11	1 supply voltage, load voltage and current waveform, harmonic spectrum, THD, crest						
	factor, rms value, distortion factor, displacement factor, active power, reactive power an						
	apparent power and power factor for R and R-L loads						
12	Study the performance of step up and step down cycloconverter.						
	Control of dc-dc converters (Buck, Boost and Buck-Boost converter) using discrete ICs						
13	like TL494/SG3525/UC3842, Power loss computation, Selection of heatsinks and PCB						
	design.						
14	Study of harmonic pollution by power electronics loads using power quality analyser						
	(Out of the above, a minimum of SIX hardware experiments and SIX simulation studies						
	are to be conducted. Simulation can be done using any of the software packages like						
	MATLAB/SIMULINK, ORCAD, PSCAD etc.)						

- 1. Practical Records / Results summing to a total of 40 Marks
- 2. Regular Class Viva-Voce summing to a total of 20 Marks
- 3. Final Test (Internal & Objective Type) having 40 Marks

SEMESTER II

Course	No.	Course Name	L-T-P-Credits	Y Intr	ear of	
10EE6102		POWER CONVERTERS II	3-1-0:4		2015	
Course P	rerequ	isites		•		
Basic k	nowled	ge of Power Electronic circuits and device	es at UG Level.			
Course C	Jbjectiv	es	4 0 4 0			
Svllabus	<u>i knowie</u>	eage about AC – AC and DC – AC conver	riers			
single ph	, nase full	bridge inverter- Three phase inverter- 12	0 conduction with s	star conne	cted load	
and with	delta co	nnected load-multi pulse modulation- sin	usoidal pulse width	modulati	on- Multi	
level inve	erters- C	cyclo converters—advanced modulation to	echniques			
Expected	l Outco	mes	-			
 Acquire knowledge about various single phase inverter. Ability to analyze and develop various control techniques for single phase inverter for reducing harmonics. Ability to analyze various three phase inverter used in power electronics for various applications. Ability to analyze and develop various three phase multilevel inverters. Ability to develop and analyze AC voltage controllers for various applications. Foster ability to understand the cyclonverters and matrix converters. Foster ability to understand the cyclonverters and matrix converters. Power Electronics Converters, Application And Design – Ned Mohan, T M Undeland, William P Robbins, John Wiley & Sons 2003 Power Electronics – M D Singh, Khanchandani, 2nd Edition, Tata Mcgraw Hill Fundamentals of Power Electronics, Second Edition, Robert W Erickson, Dragan Maksimovic, Kluwer Academic Publishers. Power Electronics Principles And Applications – Joseph Vithayathil – Tata Mcgraw Hill 						
		Course plan				
Module		Content		Hours	Semester Exam Marks (%)	
Ι	Single inverte modula inverte switch phase	Phase inverters: Basic concept o ers, Pulse width modulation switching ation and over modulation- Single pl er-Single phase full bridge inverter- Uni ing's- voltage cancellation control- Rip inverter - Push pull inverter switch utiliza	f switch –mode scheme, Linear hase half bridge polar and bipolar ple in the single tion.	10	15	
п	Voltage control of Single phase inverter: Single pulse width modulation, Multiple-pulse width modulation, modified sinusoidal pulse-width modulation, phase-displacement control. Trapezoidal modulation, staircase modulation, Harmonic injection modulation, Delta modulation. 8 15					
		FIIST IIIteriiai Examii			1.7	
III	Three Condu	Phase Inverters: 180- Degree Conduct ction, Harmonic analysis – Delta co	tion, 120 – Degree onnected and star	10	15	

	connected load. Sinusoidal PWM, Third harmonic PWM, 60 degree PWM, Space vector modulation, Effect of blanking time on voltage in PWM inverters. Current source inverters.			
IV	Multi level inverter: Diode-clamped multilevel inverter, Flying capacitor multilevel inverter, Cascade multilevel inverter. Operation and control.	8	15	
	Second Internal Examination			
V	AC Voltage Controllers: On-Off control, Phase control, Bidirectional controllers with resistive and inductive loads, Three phase full wave controllers, three phase bidirectional delta connected controllers.	10	20	
VI	Cycloconverters: Single phase to single phase cycloconverter, Three phase to three phase cycloconverter, single phase to three phase cyclo converters, Three phase to three phase bridge cycloconverter. Operation in blocked mode and current circulating mode. Load commuted cycloconverters. Matrix converter.	10	20	
		56	100	
Cluster Level End Semester Examination				

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Course	e No.	Course Name	L-T- Cred	P- its	Year of Introduction
10EE (6104	CONTROL TECHNIQUES IN POWER ELECTRONICS	3 - 0 - ():3	2015
Course P	Prerequi	sites	at UG	lovol	
Course (Course Objectives				
1. To ha	ve an ad	lvanced level knowledge on modeling and analysis o	f power	electron	ic converters
2. To de	sign and	l develop controllers for power electronics based swi	tching c	ircuits	
Syllabus	5				
Principles	s of stea	dy state converter analysis- Steady state equivalent	circuit r	nodeling	g- Analysis of
discontin	uous coi	nduction mode- AC modeling approach- State space	averagi	ng- Circ	uit averaging-
Mogenrer	l consti	ac transfer functions impedances and converter transfer f	unction	- Contr	oller design-
modeling	of the d	is continuous conduction mode- Current Programmed	anu i	DC equ	
Expected	I Outco	mes			
Students	who con	nplete this course will have an ability to:			
• M	lodel and	analyse the steady state switching converters ;			
• Se	elect pro	per ac modeling approach for the converters			
• U	se graph	ical methods for the Bode plot of transfer functions			
• D	esign co	ntrollers from the stability point of view			
• D	evelop a	c and dc equivalent models for DCM switching netw	vorks		
• A	cquire b	asic knowledge of current programmed control			
Reference	es:			and man	
Robert W	/ Erickso	on, Dragan Maksimovic, Fundamentals of Power Ele	ectronics	52^{nd} Edi	tion, Springer
IN, 20 Ali Emod	JUS Liotal I	ntagrated Power Electronic Convertors and Digital C	ontrol (DC Dro	ac 2000
All Elliau	ii ct.ai, i	Course plan			35, 2007
		Course plan			G
					Exam
Module		Content			Marks
					(%)
	Steady	state converter analysis: Principles of steady	state		
Ι	conver	ter analysis, Steady state equivalent circuit mo	deling,	8	15
	losses a	and efficiency- analysis of discontinuous conduction	mode,		
т	AC m	odeling approach: Basic AC modeling approach-	small	6	15
11	signal	modeling- State space averaging- Circuit averaging	ig and		15
	average	First Internal Examination	mouer		
	Conve	rter transfer functions: Review of bode plots- Ana	lysis of		1
	conver	ter transfer functions- Graphical construction of impe	edances		1.5
III	and co	nverter transfer function- Effect of negative feedback	c on the	8	15
	networ	k transfer functions- Construction of Closed loop	transfer		
	functio	ns- Measurement of AC transfer functions and imped	lances-		
	Contro	oller design: Stability analysis- damping factor-	Phase		
IV	margin	- Regulator design- Lag, Lead compensator	design-	6	15
	Measu	rement of loop gains			
	Discor	second Internal Examination	ircuit		
	modeli	ng of the DCM- DCM averages switch model- Small	signal		
V	AC mo	deling of DCM switch network- High frequency dyn	amics	8	20
	of conv	verters in DCM			

VI	Current Programmed control : Oscillations for D>0.5- First order models- Current programmed control in DCM	6	20		
		42	100		
Cluster Level End Semester Examination					

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Course	e No.	Course Name	L-T-P Credits	s I	Year of ntroduction	
10EE (10EE 6106MACHINE ANALYSIS AND CONTROL3-0-0		3-0-0 : :	3	2015	
Course Prerequisites						
Course (Objectiv	es				
To deve	elop und	erstanding of machine analysis				
Syllabus	5					
Electron	nagnetic	Energy conversion, reference frame theory, transform	nation of	refer	ence frames,	
DC mach	nines vol	tage and torque equations, dynamic characteristics of p	ermanent	magi	net and shunt	
DC moto	ors, Ind	duction machines voltage and torque equations in	reference	fran	ne variables,	
synchron	ous mac	hine – torque and voltage in arbitrary reference frame	and roto	r refe	rence frame.	
Simulatio	ons					
Expected	udonta a	nes	vorious	zinda	of alastrical	
machin	es	re expected to apply the modeling and analysis to	various i	linus	of electrical	
Text boo	ks					
1. Kraus	PC, Ana	lysis of Electrical Machines, Mc Graw Hill Book Com	pany			
2. Paul C	CKrause,	Oleg Wasynczuk, scott D. Sudhoff, Analysis of Electr	ic Machi	nery a	and Drive	
System	n, Wiley	Interscience		-		
3. Sengu	pta D.P.	& Lynn J.B., Electrical Machine Dynamics, The Macn	nillan Pre	ss Ltc	l.	
4. Jones	C.V., Th	e Unified Theory of Electrical Machines, Butterworth				
5. Woods	son & M	elcher, Electromechanical Dynamics, John Wiley & So	ons			
Boldia	a I. & Na	sar S.A., Electrical Machine Dynamics, The Macmillar	n Press Li	d		
		Course plan				
					Somostor	
		~			Exam	
Module		Content	H	ours	Marks	
					(%)	
	Electro	omechanical energy conversion: General expressio	n of			
т	stored	magnetic energy, co-energy and force/ torque - exa	mple	8	15	
-	using s	single and doubly excited system -calculation of air	gap	0	15	
	mmf ar	id per phase machine inductance and voltage Equations	S			
11	DC Ma	achine Modelling: Voltage and toque equations – dyna	imic			
	charact	eristics of permanent magnet and shuft DC motors – st	ate	6	15	
	transfor	rmation				
	transio	First Internal Examination				
	Refere	nce-Frame Theory: Static and rotating reference frame	es –			
	transfo	rmation of variables –transformation between reference			15	
111	frames	-two phase to three phase transformation- power		6		
	equival	ence.				
	Dynan	nic modeling of three phase Induction Mach	ines:			
	Genera	lized model in arbitrary reference frame-Electromag	netic			
IV	torque-	Derivation of commonly used Induction machine mo	dels-	8	15	
	Stator	reference frame model-Rotor reference frame m	odel-	~	10	
	Synchr	onously rotating reference frame model-Equations in	flux			
	linkage	s-per unit model-Dynamic Simulation frame.				
		Second Internal Examination				

V	Modelling of Synchronous Machines: Synchronous machine inductances –voltage equations in the rotor's dq0 reference frame- electromagnetic torque-current in terms of flux linkages- simulation of three phase synchronous machine- modeling of PM Synchronous motor.	8	20	
VI	Theory of brushless DC Machines: Voltage and Torque Equations in machine variable, in rotating reference frame variables.	6	20	
		42	100	
Cluster Level End Semester Examination				

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Course N	lo.	Course Name	L-T-P-Credits	Year of I	ntroduction
10EE 61 2	14	INDUSTRIAL CONTROL ELECTRONICS	3-0-0:3	2	2015
Prerequisite	e: Knov	wledge in Analog and Digital Electron	ics	•	
Course Obj To gives a combines the controllers.	ectives compre e analo Microc	chensive coverage of various contro og and digital concepts together with ontrollers and Digital Signal processo	l electronics us h Power Electro ors for control ap	ed in the ind nics for the opplications	lustries. This design of the
Syllabus		0 0 1	<i>y 1</i>	1	
Analog Cor programmab and control - of barcode in Basic buildi application d unit sine way	ntroller le logi interro n indus ing blo levelop ve gene	s - Proportional controllers, Digita c controllers. Signal conditioners- Is upter modules and photo sensors; Fib- try.Introduction to microprocessors, n ocks, architecture ofTMS320LF 28 oment, PI controller, Clarks and Park t eration.	al control sche solation circuits er-optics; Bar co nicrocontrollers, Sxx DSP, instru- transformation, F	mes, control –Opto-Electr de equipmen Digital Signa action set, p WM generat	algorithms, ronic devices t, application al Processors. rogramming, ion, PLL and
Course Out	come				
At the end of Desig Select Use of Provi	f course gn of P et suitat of DSP ide elec	e, the student will be able to: E based system ble power devices and feedback circuit for control applications etric isolation of power & drive circuit	t elements s		
References		-			
 Michael Jacob, "Industrial Control Electronics – Applications and Design", Prentice Hall, 1995. Thomas E. Kissell, "Industrial Electronics", Prentice Hall India, 2003 James Maas, "Industrial Electronics", Prentice Hall, 1995. Toliyat, Hamid A. and SlevenCampell, "DSP Based Electomechanical Motion Control", CRC Press 2003. TMS 320 F 240 Technical Reference Manual. Application notes on DSP based Motor Control. www.ti.com 				on Control",	
		COURSE PLA	N		
Module		Contents		Contact Hours	Sem.Exam Marks:%
Ι	Analo Propos deriva Feed f	g Controllers - Proportional rtional – Integral controllers, PIE tive overrun, integral windup, case forward control	controllers, D Controllers, caded control,	6	15
Digital control schemes, control algorithms, programmable logic controllers.Signal conditioners- Instrumentation amplifiers – voltage to current, current to voltage, voltage to frequency, frequency to voltage converters815					15
		FIRST INTERNAL	EXAM		
III	Isolati shieldi	on circuits – cabling; magnetic and ing and grounding.	electro static	6	15
IV	Opto-l for p electri	Electronic devices and control, elec hoto-electric switches-output signal c controls; Applications of opto-isolat	tronic circuits ls for photo- ion	8	15

SECOND INTERNAL EXAM				
V	Interrupter modules and photo sensors; Fiber-optics; Bar code equipment, application of barcode in industry.	6	20	
VI	Introduction to microprocessors, microcontrollers, Digital Signal Processors. Basic building blocks, architecture ofTMS320LF 28xx DSP, instruction set, programming, application development, PI controller, Clarks and Park transformation, PWM generation, PLL and unit sine wave generation.	8	20	
	Cluster Level End Semester Examination			

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Course	e No.	Course Name	L-T- Cred	·P- lits	Year of Introduction	
10EE6	6116	POWER CONVERSION IN RENEWABLE ENERGY SYSTEMS	3-0-	0:3	2015	
Course F Basic k	Course Prerequisites Basic knowledge in Electrical power systems and Power electronics at UG level.					
Course (Objectiv	es				
1. To gi	ve an ic	lea about the renewable energy sources and the ap	pplicatio	n of po	wer electronic	
devic	es and c	onverters in renewable energy systems.				
	· 1/	• • • • • • • • • • • • • • • • • • • •		NALL		
solar pho	to volta	ic systems, bioenergy, wind energy, fuel cells, oce	an energ	gy, MH	D, Geothermal	
Expected		mes				
Students	who cor	nplete this course will have an ability				
• Te	o acquire	e basic concepts of solar thermal and solar PV conve	ersion tec	chnique	s.	
• T	o analys	e various biomass to enrgy conversion technologies				
• T	o design	and develop wind energy conversion system				
• T	o design	fuel cell and MHD systems for power generation				
• T	o desigi	n ocean energy conversion systems such as O	ГЕС, Ті	de and	wave energy	
cc	onversio	n systems	ŗ			
• Te	o design	small hydro power systems				
Reference	es:					
1. D	P Kotha	ari and Nagrath, "Modern Power System Analysis",	Mcgraw	Hill, 2	011.	
2. Thoma	as Acker	man, "Wind power in power systems", John Wiley&	& Sons, I	London	, 2005	
3. M G S	imoes a	nd F A Farret, "Alternate energy systems," CRCPres	ss, Londo	on, 200	8.	
4. Domku	undvar,	"Solar Energy Resources" Dhanpatrai& Sons, New	/ Delhi.			
5. J P Ly	ons and	V Vlatkovic, "power electronics and alternative end	ergy gene	eration ²	, in proc IEEE	
power	electron	ics specialist conference, vol.1, no 1, pp.16-21, Aac	nen 2004	4.	ma fan	
0. P F Ke	ed now	A Substitution of the the terms of term	y = 2001	ge syster	ns ior	
		Course plan	. 2001.			
-		¥			Semester	
Module		Content		Hours	Exam	
					Marks	
	Introd	uction of renewable energy sources and potential-				
	Solar (energy needs and its utilization-Solar thermo mech	nanical			
т	system	s-direct conversion to electricity- grid interactiv	ve PV	8	15	
•	system	s-Isolated PV systems- requirement for maximum	power	0	15	
	trackin	g (MPPT) - dc to dc converter topologies for N	MPPT-			
	control	algorithms for MPPT	1			
	Introdu	tions Diomass -Resource potential -technolog	gy and			
п	applica	tions - biomass gasmersElectrical energy conv	ersion	6	15	
11	Biogas	types		15		
of biogas plant-community biogas plants						
	First Internal Examination					
	Wind	energy – Resonance potential –Vertical axi	s and			
	horizoi	ntal axis wind turbines –Gilberts limit- Power coefficient	cient –		15	
III	wind f	arms -Power plants -Generators for WECS- Ind	luction	8	15	
	Genera	tors- Solid state converters and control				
	L					
IV	Fuel c	ells: Introduction – working –efficiency –classifica	ation –	6	15	
	performance characteristics – dc- dc converters and control					
----	---	----	-----			
	Second Internal Examination					
V	Geothermal Energy- Resources of Geothermal –vapour dominant system-liquid dominant binary cycle. Total flow of geothermal power unit- energy conversion systems. MHD: Principle –simplified analysis of MHD- factors affecting the efficiency of MHD-types-present status of MHD generation.	8	20			
VI	Ocean energy conversion: OTEC –Principle –cycle, operation of OTEC systems .Location of plants –types –technology and applications- Tidal and wave energy. Small hydropower generation-turbines and generators- grid tied systems- stand alone systems- induction generators- Electronic load controllers.	6	20			
	TOTAL	42	100			
	Cluster Level End Semester Examination					

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Course	e No.	Course Name	L-T-l Credi	P ts I	Year of ntroduction	
10EE6	5118	POWER SEMICONDUCTOR DEVICES	3-0-0):3	2015	
Course F	Prerequi	sites				
Basic k	nowledg	e on Electronic circuits and systems.				
Course C	Jbjectiv	es				
An under	standing	yith various never semiconductor devices				
An idea shout the detailed share staristics and share more of neuron semiconductors						
An idea a	ibout the	detailed characteristics and phenomena of power se	ennconduc	ctors.		
Syllabus	5					
An introd	luction to	o various material properties like intrinsic carrier co	ncentratio	n, band	gap	
narrowing	g, carrie	r mobility etc; expertise with punch through diode a	nd linearly	y gradeo	l junction	
diode; Sc	hottky r	ectifier and power MOSFET; detailed study of BJT;	Darlingto	on confi	guration;	
thyristor	and TRI	AC; IGBT.				
Expected	I Outcon	mes		•		
Student	ts who s	uccessfully complete this course have demonstrate	ed an abili	ity to u	nderstand the	
general	materia	appropriate of power semiconductors; expertise in	1 the lunc		and related	
nhenon	power	semiconductor devices along with its detailed		ensues	and related	
Text Boo	ks.					
1. M	I.D. Sing	h and Khanchandani. Power Electronics. 2nd editio	on. Tata N	I cGraw	Hill	
2 L	nsenh Vi	the state of the s	tions Tat	a McGr	Tw Hill	
2. JC Reference	sepn vu	mayanni, 1 ower Electronics principles and applica	<i>uons</i> , 1 <i>uu</i>		<i>IW</i> 11111	
3 P	Javant	Baliga Fundamentals of power semiconductor devi	ces Sprin	ger		
5. 1.	. ouyum	Dunga, I unaumentais of power servicentaicier acti	ees, sprin	.801		
		Course plan				
		-			C	
				Hour	Semester Exam	
Module		Content		s	Marks	
				5	(%)	
	Materia	al properties – intrinsic carrier concentration – b	and gap			
	narrow	ing – built in potential – zero bias depletion width -	- impact			
	ionizat	ion coefficients – carrier mobility – resist	ivity –			
Ι	recomb	bination lifetime. Avalanche breakdown – abru	pt one-	8	15	
	dimens	ional diode – ideal specific on-resistance – abrur	ot punch			
	through	h diode – linearly graded junction diode – edge term	inations			
TT	- open	base transistor breakdown – surface passivation	_			
	blockin	y reculler: structure – lorward conduction – reverse				
	roctifie	$r_{\rm S}$ = device capacitatice – trade off analysis. F = 1 – 1	N ance	6	15	
	buffer	laver – non punch through – trade off curves	ance –			
	First Internal Evamination					
	Power	MOSFET: Structure - Blocking voltage – forward				
	conduc	tion characteristics –on resistance – cell optimization	n –			
ттт	transfe	r characteristics – output characteristics – device		0	15	
	capacit	ances – gate charge – high frequency operation – sv	vitching	ð		
	charact	eristics - safe operating area - integral body diode -	- high			
	temper	ature characteristics .				
IV	Bipola	s junction transistor: structure – static	olocking	6	15	
11	charact	eristics – current gain – emitter current crowding	– output	U	15	

M. Tech Program in Power Electronics & Drives (Cluster No:10)

	characteristics - on state characteristics - switching characteristics			
	safe operating area – Darlington configuration.			
	Second Internal Examination			
V	Thyristors: structure – blocking characteristics – on state characteristics – switching characteristics – light operated thyristors – self protected thyristors – gate turn off thyristor – triac	8	20	
VI	IGBT: structure – device operating and output characteristics – equivalent circuit – blocking characteristics – on state characteristics – current saturation model – switching characteristics – power loss optimization – safe operating area – blocking voltage scaling – high temperature operation.	6	20	
		42	100	
Cluster Level End Semester Examination				

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Course	e No.	Course Name	L-T-P- Credits	Year of Introduction	
10EE6	5122	MICROCONTROLLER APPLICATIONS IN POWER ELECTRONICS	3-0-0:3	2015	
Course P Digital	Prerequi Electroi	isites nics, C programming, a Course in Microprocessors at	the UG Level		
Course C To give	 Course Objectives To give the Student:- A basic idea about Microcontrollers in general and 8051 in detail. The ability to write programs in assembly language using 8051 instructions. The ability to write microcontroller programs using C language. 				
Syllabus 8051 fam internal R language Instructio – control 8051 prog programm	Syllabus 8051 family – architecture of 8051 – 8051 programming model – 8051 pin diagram – internal RAM organization – ports – program status word – register – 8051 assembly language programming – register banks and stack – addressing modes – external data modes Instruction set of 8051 – arithmetic operations – logical operations – data transfer operations – control transfer operations 8051 programming in C – timer programming in assembly language and C – serial port programming in assembly language and C – interfacing to external memory				
Expected 1. St 2. A 3. Id 4. Fa 5. Fa 6. W 7. In	 Expected Outcomes Students who successfully complete this course will have the skill to Acquire knowledge on the microcontroller development systems Identify and assemble the buiding blocks for 8051 controller Familirize with various addressing modes of 8051 Familiarize with instruction set of 8051 Write programs in assembly language and C language for 8051 Implement microcontroller based PE systems. 				
 REFERENCES: 1. Muhammad Ali Mazidi, Janice Gillispie Mazidi and Rolin D.McKinlay, 'The 8051 Microcontroller and Embedded Systems Using Assembly and C', Pearson Education, Inc.2013 2. Kenneth J Ayala, 'The 8051 Microcontroller Architecture, Programming & Applications''. 3. Kenheth J. Hintz and Daniel Tabak, 'Microcontrollers - Architecture, Implementation and programming' McGraw Hill, USA, 1992. 					
		Course plan		a (
Module		Content	Hours	Semester Exam Marks (%)	
I	Evolut process develo	ion of micro-controllers – comparison between micro sor and microcontrollers- Micro-controller pment systems – simulators.	6	15	
II	8051 family – architecture of 8051 – 8051 programming model – 8051 pin diagram –internal RAM organization – ports – program status word – registers815				
		First Internal Examination			
III	8051 a stack –	ssembly language programming – register banks and addressing modes – external data moves.	8	15	

IV	Instruction set of 8051 – arithmetic operations – logical operations – data transfer operations – control transfer operations	6	15		
	Second Internal Examination				
V	8051 programming in C – timer programming in assembly language and C	8	20		
VI	Serial port programming in assembly language and C – Typical applications in the control of power electronic converters for power supplies and electric motor drives.	6	20		
		42	100		
Cluster Level End Semester Examination					

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Course No	Course Name	L-T-P-Credits	Year of I	ntroduction	
10EE 6124	10EE 6124HIGH VOLTAGE DC AND AC TRANSMISSION3-0-0-32015				
Prerequisite	Fundamental Knowledge about the power f	low in transmiss	ion line.		
Course Obje	ctives				
To understan	d the concept, planning of DC power transm	ission and comp	arison with A	C	
Power transm	uission				
To analyze H	VDC converters				
To study abo	it compounding and regulation				
To analyze h	urmonics and design of filters				
To learn abo	<i>it HVDC cables and simulation tools</i>				
Syllabus					
INTRODUC	FION - Introduction of DC Power trans	mission technol	ogy –Descrip	ption of DC	
transmission	system – Planning for HVDC transmission	-Analysis of H	VDC Conver	ters– Choice	
of converte	r configuration –Converter bridge ch	naracteristics –	Detailed	analysis of	
converters.Co	ompounding and Regulations - General	-Inverter com	pounding –	I ransmission	
characteristic	s with the rectifier and inverter compound	ing – Communi	cation link –	Transformer	
tap changing	Harmonics and filters and Simulation – (Seneration of ha	rmonics - D	esign of AC	
filters and D	filters –Introduction to system simulation	– Modeling of J	HVDC system	ns for digital	
dynamic sim					
Course Out	ome Gales and the state of the	1			
After success	ful completion of this course the students ab	ole to			
	acquire the basic principles and technolog	y of DC transmis	ssion,		
	analyse HVDC converter and control of po	ith the reatifier of	ndingrantan		
3.10	analyze the Transmission characteristics w	ith the rectifier a	nd mverter		
4. IO	Action AC filters and DC filters				
5. T	analyse the affects of harmonic in DC lines				
0. 10	analyse the effects of narmonic in DC lines	>			
1. Padiyar	K. R., "HVDC Power Transmission Systems addition	tem", Wiley Eas	stern Limited	, New Delhi	
1990, Г Э. Edward	IISt Edition. Wilson Kimberk "Direct Current Transv	wiggion" Vol I	Wilow Intore	aianaa Naw	
2. Euward Vork I	wilson Killioark, Direct Current Iransn	<i>mission</i> , vol. 1,	whey fillers	clence, new	
2 Colin	Adamson and Hingoroni N C "H	lich Voltage	Direct Cur	nont Dowon	
J. Com	Adamson and Hingolam N O, H	ligh vollage	Direci Cur	reni rower	
A Arrillao	2 I "High Voltage Direct Current Transm	ission" Poter Pre	arinus I and	on 1983	
5 Pakosh	Das Begamudre "Extra High Voltage	ΔC Transmis	sion Engina	on, 1905. pring" New	
J. Kakosh AgeInte	rantional (P) I to New Delhi 1990	AC Transmus	sion Enginee	and a new	
Ageinte	Tantional (1) Etd., New Denn, 1990.				
	COURSE PLA	N			
COUR	SE NO: 10EE 6124 COURSE TITLE	E: HIGH VOLT	AGE DC AN	DAC	
0001	TRANSMISSION (L-T-P: 3-0-0)) CREDITS	5: 3		
		,	Contact	Sem.Exam	
Module	Contents		Hours	Marks:%	
	INTRODUCTION - Introduction of	DC Power			
transmission technology – Comparison of AC and DC				15	
1	transmission – Application of DC tr	ansmission –	0	15	
	Description of DC transmission system				
	Planning for HVDC transmission – Moderr	n trends in DC			
II	transmission.ANALYSIS OF HVDC COM	NVERTERS -	8	15	
	Pulse number – Choice of converter configu	ration			
FIRST INTERNAL EXAM					

M. Tech Program in Power Electronics & Drives (Cluster No:10)

III	Simplified analysis of Graetz circuit – Converter bridge characteristics – Characteristics of a twelve pulse converter – Detailed analysis of converters.	6	15	
IV	COMPOUNDING AND REGULATIONS - General – Required regulation – Inverter compounding – Uncompounded inverter – Rectifier compounding – Transmission characteristics with the rectifier and inverter compounding –	8	15	
SECOND INTERNAL EXAM				
V	Communication link – Current regulation from the inverter side – Transformer tap changing. HARMONICS AND FILTERS and SIMULATION - Introduction – Generation of harmonics – Design of AC filters and DC filters	6	20	
VI	Interference with neighbouring communication lines. Introduction to system simulation – Philosophy and tools – HVDC system simulation – Modeling of HVDC systems for digital dynamic simulation.	8	20	
Cluster Level End Semester Examination				

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Course	No.	Course Name	L-T-P-Credits]	Year of Introduction	
10EE61	26	ENERGY MANAGEMENT	3 - 0 - 0 :3		2015	
Course F	rereo	quisites				
Basic k	nowle	edge of Electrical & Mechanical Engir	eering at UG Level.			
Course C	Jbjec urse i	lives a designed to provide students knowle	dae and ability to unde	rstand th	a principles of	
energy	mana	gement and apply this to practical syst	ems	istanu th	e principies or	
Syllabus	5	gement and apply this to practical syst				
Importan	ce of	energy management. Energy auditing-	Electric motors- Variab	le speed	drives; Pumps	
and Fans-	Reac	tive Power management-Lighting- Co	mpressed Air Systems, I	Refrigera	tion & air	
condition	ing sy	stems-Boiler -Cogeneration- Electric	water heating-Solar Wa	ter Heate	ers- solar PV	
systems.	104					
After suc		comes	te able to			
Alter suc		acquire the need of energy conservation	is able to			
1.	To	analyse Types and objectives of energy	v auditing			
3.	То	analyze the methods for reactive powe	r compensation			
4.	То	analyze tools for economics of energy	conservation			
5.	То	analyze the ECO (Energy Conservatio	n opportunity) in electri	c system	s such as	
	mot	cors, lighting etc.			. 1	
6.	10 hoil	analyze the ECO (Energy Conservatio	n opportunity) in mecha	inical sys	tems such as	
	UOII	iers, pumps, compressors, water nearer	5 ClC.			
Text boo	ks					
1. G	uide	Book for National Certification Ex	amination for Energy	Manage	ers & Energy	
A	uditor	rs – Bureau of Energy Efficiency, Min	istry of Power, Govt of	India.		
2. H	andbo	ook on Energy Audit and Environmen	t Management, Y P A	bbi and	Shashank Jain,	
	ERI, 2			0 1 0		
3. U	tilizat	ion, Generation & Conservation of are 2007	of Electrical Energy,	Sunil S	.Rao, Khanna	
μ μ	nthon	v I Pansini Kenneth D Smalling (uide to Electric Load N	Managem	ent Pennwell	
	ub; (1	998)	Jude to Electric Loud I	vianagen	lent., i enniwen	
5. P	artab	H., 'Art and Science of Utilisation of I	Electrical Energy', Dhai	npat Rai a	and Sons, New	
D	elhi. 1	1975		-		
6. T	ripath	ny S.C., Electric Energy Utilization Ar	d Conservation', Tata N	IcGraw I	Hill, 1991	
7. L.	.C.Wi	tte, P.S.Schmidt, D.R.Brown, Ind	ustrial Energy Manage	ement a	nd Utilisation,	
H	emisp	ohere Publ, Washington, 1988.				
		Course n	lan			
		course p			Semester	
Module		Content		Hours	Exam	
					Marks (%)	
	Impo	ortance of energy management	Energy auditing:			
	meth	nodology System approach and End us	e approach to efficient			
Ι	use	of Electricity; Electricity tariff types;	Types and objectives-	8	15	
	audi	a consumption models Case stu	ysis-Minimum energy			
	management					
II	Elec	tric motors- Energy efficient controls	and starting -Motor			
	Effic	ciency and Load Analysis- Energy effi	cient motors-Case	C	15	
	stud	y; Load Matching and selection of mo	tors-Variable speed	0	15	
	drive	-	-			

First Internal Examination				
III	Reactive Power management-Capacitor Sizing-Degree of Compensation-Capacitor losses- Location-Placement- Maintenance, case study. Peak Demand controls- Methodologies- Types of Industrial loads-Optimal Load scheduling-case study.	8	15	
IV	ECO assessment and Economic methods- Simple payback period- time value of money-Net Present value- Internal rate of return- Lighting- Energy efficient light sources-Energy conservation in Lighting Schemes- Electronic ballast-Power quality issues- Luminaries, case study	6	15	
	Second Internal Examination			
V	 Energy conservation in Pumps- Optimal selection and sizing - Case study- Fans (flow control), Refrigeration & air conditioning systems. Boiler -efficiency testing, excess air control, Steam distribution & use- steam traps, condensate recovery, flash steam utilization Cogeneration-Types and Schemes-Optimal operation of cogeneration plants-case study; 	8	20	
VI	Power Consumption in Compressors, Energy conservation measures. Water heating -Gysers-Solar Water Heaters- solar PV systems.	6	20	
		42	100	
	Cluster Level End Semester Examination			

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Course	e No.	Course Name	L-T Crea	-P- dits	Year of Introduction	
10EE6	5128	WIND ENERGY CONVERSION SYSTEMS	3-0-(): 3	2015	
Course P	Prerequi	isites <i>we in</i> Electrical machines and power electronics <i>at UG</i>	level			
Course ()hiectiv	res	ievei.			
To introd	uce the	various electrical generators and appropriate power el	lectron	ic contro	ollers	
employed	l in wind	d energy systems. To teach the students the steady-sta	te anal	vsis and	operation	
of differe	nt existi	ng configurations of electrical systems in wind energy	v and a	lso the r	ecent	
developm	nents tak	ting place in this field.	<i>,</i>			
Syllabus						
Introduct	ion to w	ind energy technology- generators and control aspect	s of Wl	ECS- Re	active power	
compensa	ation for	induction generator based WECS- Offshore WECS-	Model	ling of C	Brid connected	
induction	generat	or wind farm-DFIG in WECS-Operation of PMSGs-		U		
	-	-				
Expected	l Outco	mes				
Students	shall be	able to				
1. Acc	quire the	e principles of aerodynamics and operation of systems	in win	nd energ	у	
2. To	design a	ind implement the electrical systems				
3. To	analyse	the closed loop control for specific applications.				
4. To	Model (Frid connected induction generator wind farm				
5. To	analyse	the application of DFIG in WECS				
6. 10	analyse	the application of PMSG in WECS				
Keierenc	Ces:	and I langehouten "ruind anoney systems and smalle		Noraca	aublications	
I. D	P Koth	ari and Umasnankar wind energy systems and applic	ations	Narosa	publications,	
	N Dhod	, 2014 Ira D Kastha and S Panaria, 'Wind Electrical System	a' Ort	ford Uni	varaity Drago	
2. 5.	10. Dilat	ira, D.Kastna and S.Banerje, wind Electrical System	IS, OXI		versity Press,	
	105. jogfrjad	Heier Pachel Waddington 'Crid Integration of Win	d Enor	ay Cony	argion	
5. S	vstems	2nd	u Liici	gy Conv	ci sion	
E E	dition'	Wiley June 2006 ISBN: 978-0-470-86899-7				
4 Fr	eriesLI	'Wind Energy Conversion Systems' Prentice Hall	UК	1990		
		Course plan	0.11.,	1770.		
					Someston	
Module		Content		Hours	Fyam	
Withuit		Content		Hours	Marks	
	Introd	uction to wind energy technology- Aerodynamics a	nd		THUI NO	
Ι	design	of Wind turbines- horizontal axis and vertical axis wi	ind	8	15	
	turbine	es-Betz limit- power coefficient.				
	Gener	ators and control aspects of WECS- Generator				
II	configu	ration and power electronic interface- Power quality		6	15	
	issues					
First Internal Examination						
	Reacti	ve power compensation for induction generator base	ed		15	
III WECS-types of reactive power compensation- shunt and series 8						
	compensators					
	Offsho	ore WECS- Modelling of Grid connected induction				
IV	genera	tor wind farm		6	15	
		Second Internal Examination				
V	DFIG	in WECS- Different operating modes- steady	-state	8	20	

	equivalent circuit- performance analysis- DFIG for standalone			
	configurations for standalone and grid-connected operation.			
VI	Operation of PMSGs - steady-state analysis- performance characteristics- operation of PMSGs with different power electronic configurations for standalone and grid-connected Operation.	6	20	
	TOTAL	42	100	
Cluster Level End Semester Examination				

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Course	e No.	Course Name	L-T Cre	-P- dits I	Year of introduction	
10EE6	5132	DISTRIBUTED GENERATION AND MICRO GRID	3-0-	0:3	2015	
Course P	Course Prerequisites					
Course (<u>nowieag</u>	e in Electrical power systems and Fower electronics	<i>ui U</i> G	ievei.		
2 To gi	ve an ide	es about the renewable energy sources and the integr	ation w	ith orid		
Svllabus	ve un luc	the used the renewable energy sources and the integr		nii gi ki.		
Need for impacts of systems. Economic Steady-st	Distrib of DGs c and co	uted generation, Grid integration of DGs –Energy –Impact of DGs upon transient and dynamicstal ontrol aspects of DGs –Power quality issues-Reliab Dynamic analysis-Introduction to micro-grids – Mic	y stora pility o pility or progrid	ge eleme f existing f DG bas	nts-Technical g distribution ed systems –	
interfacin	o units	Dynamic analysis infoduction to inclo gras with	ciogila	swith pov	ver electronic	
Expected	l Outcoi	mes				
Students	who cor	nplete this course will have an ability to understand	the fu	Indamenta	al concepts of	
generatin	g electr	ical energy from renewable energy systems and conr	necting	with elec	trical grid.	
Reference 1. H	es: . Lee W	illis, Walter G. Scott, 'Distributed Power Generation	– Plan	ning and I	Evaluation',	
2. M	larcel De I.Godoy!	CKET Press, 2000. Simoes, Felix A.Farret, 'Renewable Energy Systems Generators' CRC press	– Desi	gn and Ai	nalysis with	
3. R 4. F. Ei	obert La Katirae nergy Re	sseter, Paolo Piagi, ' Micro-grid: A Conceptual Solu i, M.R. Iravani, 'Transients of a Micro-Grid System esources', International Conference on Power System	tion', P with M ns Tran	ESC 200 ultiple Di sients (IP	4, June 2004. stributed ST'05) in	
M	lontreal,	Canada on June 19-23, 2005.				
	1	Course plan				
Module		Content		Hours	Semester Exam Marks	
I	Need for generation of DGs sources	or Distributed generation, renewable sources in distri- tion, current scenario in Distributed Generation, Plan s – Sitting and sizing of DGs – optimal placement of s in distribution systems.	ibuted ning DG	8	15	
п	Grid in based I of mult capacit	tegration of DGs – Different types of interfaces - Inv DGs and rotating machine based interfaces - Aggrega tiple DG units. Energy storage elements: Batteries, up ors, flywheels	verter ation ltra-	6	15	
		First Internal Examination				
III	III Technical impacts of DGs – Transmission systems, Distribution systems, De-regulation –Impact of DGs upon protective relaying – Impact of DGs upon transient and dynamic stability of existing 8 15					
IV	Econor challen Reactiv Reliabi analysi	nic and control aspects of DGs –Market facts, issues ges - Limitations of DGs. Voltage control techniques we power control, Harmonics, Power quality issues. lity of DG based systems – Steady-state and Dynamis.	and s, ic	6	15	
		Second Internal Examination			•	
V	Introdu autono	ction to micro-grids – Types of micro-grids – mous and non-autonomous grids – Sizing of micro-g	rids-	8	20	

	modeling& analysis- Micro-grids with multiple DGs.			
VI	Micro grids with power electronic interfacing units. Transients in micro-grids - Protection of micro-grids – Case studies.	6	20	
	TOTAL	42	100	
Cluster Level End Semester Examination				

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Two internal tests, each having 15 marks each summing to a total of 30 marks
Tutorials / Assignments / Course Seminars summing to a total of 10 marks, and
Cluster level end-semester examination having 60 marks

Course	e No.	Course Name L- Cr	Γ-P: edits	Year of Introduction
10ME	6116	DESIGN OF EXPERIMENTS 3-0	0:3	2015
Prerequi	sites	statistics at the UC level		
Chicatin		statistics at the UG level		
Objectiv	es	and the students to the basis statistical concents, complia	tashnia	
I fils coul	rse expo	ses the students to the basic statistical concepts, sampling	g tecnniq	ues, principies
	cations	Di Design di Experiments.		
History (of desig	n of avariment: strategy principle and application of		rationale for
randomiz	ation R	estricted randomization. Testing significance of effe	nts in s	2^k factorial
experime	nt-Deve	loping a mathematical model - Experiments with singl	e factori	al design and
applicatio	on of AN	IOVA- 2k and 3k factorial design	e nuctori	ai designi and
Expected	l Outco	mes		
On compl	etion of	this course, the students will able to		
• C	onduct tl	ne experiments using factorial designs.		
• G	et the ba	sic idea of Factorial design. 2k and 3k factorial design: bloc	king and	confounding
te	chnique	s in 2k factorial design.	0	υ
• G	et famili	arized with the purpose of randomization.		
• In	iterpret e	experimental results		
Reference	es	*		
1. Lawso	on, J. &	Erjavec, J., "Modern Statistics for Engineering and Q	uality In	nprovement",
Thomse	on Duxb	ury, Indian EPZ edition	-	-
2. Nibtgin	nertm D	iygkas C, "Design and Analysis of Experiments". Fifth ed,-	John Wil	ey & Sons
3. Box, C	George E	P, Hunter William G, Hunter Sturat J: "Statistics for Exp	erimenter	s" John Wiley
& Sons				
4. Dougla	as C. Mo	ontgomery, "Design and Analysis of Experiments", 8th Edit	ion, , Joł	in Wiley
		Course Plan		
				Semester
Module		Content	Hours	Exam
				Marks (%)
	History	of design of experiment; strategy, principle and		
	applica	tion of DOE; basic statistical concepts, sampling		
Ι	technic	ues and distributions; inferences about means and standard	6	15
	deviati	ons and considerations of different hypothesis		
	Experi	ments with single factorial design and application of		
	ANUV	A, randomized blocking and Latin squares.		
т	All III	troduction to Design of Experiments; The problem of	6	15
11	A ratio	nale for randomization. Restricted randomization		15
	ATatio	First Internal Examination		
	Hypoth	nesis Testing rationale: Comparing two method	s	
	experi	nentally: Introduction to Factorial Experiments and DO	<u>-</u>	
III	Termir	ology: Yate's algorithm for calculation of effects in a 2	^k 8	15
	design	Testing significance of effects in a 2^k factorial experiment		
	Norma	Probability Plot on ordinary graph paper.	,	
	Develo	ping a mathematical model; Residual Analysis, testing for	r	
TT 7	model	adequacy; Finding the Alias Structure of a Fractiona	1 0	15
1 V	Factori	al; strategy, principle and application of DOE; basi	c 8	15
	statisti	cal concepts, sampling techniques and distributions		
		Second Internal Examination		
V	Inferen	ces about means and standard deviations an	1 8	20

M. Tech Program in Power Electronics & Drives (Cluster No:10)

	considerations of different hypothesis; Factorial design, 2k and 3k factorial design; blocking and confounding techniques in 2k factorial design;		
VI	Concept of fractioning of factorial design; Response surface method; Introduction to robust design, robust parameter design for single response system; Experiments with non-normal data.	8	20
Cluster Level End Semester Examination			

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Course	e No.	Course Name	L-T-P: Credits	Year of Introduction
10ME	6122	QUALITY AND RELIABILITY ENGINEERING	3-0-0:3	2015
Course P	Prerequi	sites		•
Fundame	ntal kno	wledge in probability theory and statistics is desirable.		
Course C	Objectiv	es		
To learn	in depth	the quality and reliability aspects with emphasis on a	n industrial	organizational
environm	ent.			
Syllabus				
Tradition	al Qua	lity Control-Total Quality management-QMS-ISO9	000 stand	ards- Taguchi
methods-	Six sign	na concepts- Design of experiments- Reliability- Total	Productive	e Maintenance-
Reliabilit	y manag	ement.		
Expected	1 Outcol	mes		
Alter con	npieting	the course, the students will be able to		anina fialda
• 10	lentiny a	he describe various areas in the quality control and renal	binty engine	eering neids.
• PI	an and c	lesign a quanty control program in an industry/organizat	.1011.	
• Es		he reliability of complex engineering systems		
• U Defenence	ain good	i understanding of the principles of total productive man	ntenance	
	alo U· D	astarfield Total quality Mangament Daarson Education	Inc	
1. D	ale II, D oplan D	ractical Approach to Quality Control Random House	IIIC	
2.0	'Connor	Practical Reliability Engineering John Wiley and Son	¢	
3. O 4 R	van Sta	tistical Methods for Quality Improvement John Wiley	and Sons	
5 R	oss Tao	uchi Techniques for Quality Engineering McGraw Hill	Publishers	
6 D	ouglas (Montgomery Design and Analysis of Experiments. Ic	hn Wiley a	nd Sons
7. B	alagurus	wami E., Reliability Engineering, Tata Mc Graw Hill P	ublishing C	o. Pvt Ltd
		Course plan		
		Course plan		C
Madula		Contont	Hour	Semester
wiouule		Content	S	Exam Marks (%)
	Basic (concepts and definition. Traditional Quality Control To	tal	Wiai KS (70)
	Ouality	management Deming's principles Customer focu	19	
Ι	Employ	vee involvement Continuous process improvement	nt 8	15
	PDCA	cycle	int,	
	Seven	step process. Kaizen, Quality measurements, Quali	itv	
	costs.	OFD, OMS-ISO9000 standards-requirements a	nd 8	1.5
11	docum	entation, Taguchi methods, quality loss function	on,	15
	Parame	eter design and Tolerance design concepts	,	
		First Internal Examination		
	Six sig	ma concepts -define and measure phase, flow charting	ıg,	
тт	basic	tools, probability and hazard plotting, Six sign	na	15
111	measur	rements, basic control charts and process performan	ce	
	matrice	es, Measurement systems analysis.		
	Design	of experiments-basics, single factor, two fact	or	
IV	experin	nents. ANOVA, Taguchi approach to design	of 8	15
11	experin	nents, orthogonal arrays, Signal to noise ratio, RSN	M-	15
	concep	ts and methods.		
		Second Internal Examination		
V	Fundar	nental aspects of reliability, Reliability mathematic	cs, 8	20
v	Reliabi	lity testing and evaluation methods. FMEA, Failure da	ita 🛛 🖉	

	analysis.			
VI	Total Productive Maintenance, maintainability and Availability Concepts, Reliability management.	8	20	
Cluster Level End Semester Examination				

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Course	e No.	Course Name	L- Cr	T-P: edits	Year of Introduction			
10ME(6124	PROJECT ENGINEERING AND MANAGEMENT	3-0	-0:3	2015			
Course P Basic kno	Course Prerequisites Basic knowledge of Industrial Engineering or Management at the UG Level							
Course C	Objectiv	res						
This cour of the pro organizin	rse exan oject ma g, plann	nines project management in theory and practice and panager. The course offers a practical approach to maning, and controlling the efforts of the project.	the ro naging	les and r g project	esponsibilities s, focusing on			
Syllabus Overview Estimatio Monitorii	of Pro on - Pr ng and C	ject Management - Project Management Concepts an oject Planning and Scheduling- Resource Constra Control - Management of Special Projects.	d Tec ined	hniques Schedul	- Project Cost ing - Project			
Expected	l Outco	mes						
On comp	letion of	f the course, the students are expected to have						
• A	thoroug	gh understanding of the principles of project management	ent;					
	he abilit	y to lead a project team;	timo	ovorruna				
• T	he know	ledge on the procedure for implementing big and spec	ial pro	piects.	,			
Referenc	e Book	s	iui pi	Jeets.				
1. Sł	htub, Ba	rd and Globerson Project Management: Processes, Me	thodo	logies, a	nd			
E	conomic	es, 2/E, Prentice Hall Inc, 2005.						
2. Lo	ock, Pro	ject Management Handbook, Gover Publishing Ltd, 1	981.	1000				
3. C	leland a	nd King, Project Management Handbook 2 Edition,	Wiley. Hall c	, 1988. India N	Jew Delhi			
5. H	orald Ke	erzner. Project Management: A Systemic Approach to	Plann	ing. Sch	eduling and			
C	ontrollir	ng, CBS Publishers, 2002.						
6. S.	Choud	hury, Project Scheduling and Monitoring in Practice, S	outh	Asian Pu	blishers,			
D	elhi, 198	83.						
		Course Plan						
Module		Content		Contra hours	ct Semester Exam Marks %			
Ι	Introdu	action to Project management, Characteristics of proj	ects,					
	Definit	tion and objectives of Project Management, Stage	s of	6	15			
	Project	t Management, Project Planning Process, Establis	ning					
П	Project	t screening and Selection Techniques - Structu	ring					
	concep	ots and Tools - Work Breakdown Structure, Organisa	tion					
	Breakdown Structure, and Linear Responsibility Chart - Project							
Planning Tools- Bar charts, Line of Balance – Critical Path					15			
	Method, and Project Evaluation and Review Technique- Risk							
	Anarys	First Internal Examination						
III	Tv	pes of Estimates and Estimating Methods- Capital	Cost	-	1.5			
	Est	timation - Project Budgeting - Project cash flow analysis	is	6	15			
IV	Pro	oject Scheduling with Resource Constraints- Reso	urce					
	Le	veling- Resource constrained scheduling with mul	tiple	10	15			
	res	ources- linear programming formulation – Introduction	n to					

	staff scheduling and rostering		
	Second Internal Examination		
V	Monitoring Techniques and time control System- Project		
	Cost Control -Time cost Tradeoff procedure, lowest cost	8	20
	schedule- Computer applications in project management		
VI	Management of Software Engineering Projects, New Product		
	Development Projects, R&D Projects and Large Scale	8	20
	Construction Projects -Case Studies		
	End Semester Cluster Level Examination		

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Course No	. Course Name	L - T - P - Credits	Year of Introduction			
10EE 6108	3 MINI PROJECT	0 - 0 - 4 - 2	2015			
Course Pre (1) The ha (2) Skills (3) The co	requisites bit of reading technical magazines, conference proceed in hardware/software implementation techniques earned urse Seminar 1 in the first semester	ings and journals; through UG stud	lies;			
Course Ob	ectives					
(1) To su	pport the problem based learning approach and to en	hance the readin	g habit among			
(2) To er	hance the skills regarding the implementation aspec	cts of small hard	dware/software			
projects.						
Guidelines	ant has to do a mini project related to the branch of spec	violization under t	the guidence of			
a faculty r is recomm 3rd& 4th the work student c implemen envisaged and/or pro- high prior guide(s) encourage for the mi Expected C The stude • Develo • Develo • Impler • Be mo • Comm	 Each student has to do a mini project related to the branch of specialization under the guidance of a faculty member. It has to be approved by a committee constituted by the institute concerned. It is recommended that the same faculty member may serve as his/her Project Supervisor during 3rd& 4th semesters. The mini project is conceptualized in such a way that, some the outcomes of the work can be utilized in the selection of the thesis. Hence on completion of mini project the student can suggest possible list of their thesis topic in the second semester itself. The implementation of the mini project can be software and/or hardware based one. Mini project is envisaged as a way for implementing <i>problem based learning</i>. Problems of socially relevance and/or problems identified by the institute/ research organizations/ industry/ state should be given high priority. In such interdisciplinary and inter institutional projects, a student can have coguide(s) from other department/ institute/ research organizations/ industry. The university encourages <i>interdisciplinary projects</i> and <i>problem based learning strategy</i>. The references cited for the mini project shall be <i>authentic</i>. Expected Outcomes The students are expected to : Develop skills for subsequent design and analysis Implement the hardware/software building blocks of the system Be motivated and successful in the selection of the topic for the main project 					
References			X 7 1			
1. J.W.E 2 Schan	ames, Statistical Analysis for Engineers and Scientists, I K Fr. Theories of Engineering Experiments, Tata McGr.	McGraw Hill, Nev aw Hill Publicatio	w York.			
3. Dougl	as C Montgomery, Design and analysis of experiments,	Wiley Internatio	nal			
4. Leedy	4. Leedy P D, <i>Practical Research : Planning and Design</i> , 4th Edition, NW MacMillan					
Course plan						
Item	Description	Tim	e			
1 A	bstract Submission	2 Wee	eks			
2 A	llotment of Topic	1 We	ek			
3 P	reliminary Presentation Sessions	1 We	ek			
	nplementation Phase	9 Wee	eKs			
$\begin{array}{c c} 5 & \mathbf{F} \\ \hline 1 & \mathbf{Proliming} \end{array}$	mai Presentation-cum Demonstration	1 We				

Preliminary Presentation evaluated by the Progress Evaluation Committee (PEC) : 20 Marks
 Progress Evaluation (Guide and/or Co-guide): 30 Marks

3. Final Presentation-cum-demonstration evaluated by the PEC: 30 Marks

4. Report (Mandatory): 20 Marks

ourse	No.	Course Name	L-T-P-	Year of			
10EE6	112	ADVANCED DRIVES LAB	0-0-2:1	2015			
Course P	rereau		• • • • • •				
Basic ki	nowledg	ge of Power Electronics and drives at UG Level.					
Course O	bjectiv	es					
To desig	gn and c	levelop power electronic drives and control.					
Syllabus							
• D0	C motor	· drives					
• In	duction	motor drives					
• BI	LDC mo	otor drives					
• Sv	vitched	Reluctance motor Drives					
• PN	MDC m	otor drives					
Expected	Outco	mes					
Upon th	e comp	letion of this course, students will have the ability to:					
•	Design	and implement various speed control techniques for d	c drives				
•]	Design	and implement various speed control techniques for a	c drives				
• .	Analyse	the performance of speed control techniques for BLI	DC/SRM type	e drives			
•]	Familia	rize with the DSP based control schemes					
• (Obtain a	and analyse the characteristics of Fuel cell and PV cell	ls				
•	Model a	and analyse the performance of wind energy conversion	on systems				
1. Po 1. Po W 2. Po 3. Po 4. Po 5. El- 6. Fu 7. AC 8.	 References Power Electronics Converters, Application And Design – Ned Mohan, T M Undeland, William P Robbins, John Wiley & Sons 2003 Power Electronics – M D Singh, Khanchandani, 2nd Edition, Tata Mcgraw Hill Power Electronics Principles And Applications – Joseph Vithayathil – Tata Mcgraw Hill Power Electronics – Cyril W Lander – Tata Mcgraw Hill Electric Drives – Vedam Subrahmanyam – Tata McGraw Hill – 2nd Edition Fundamentals of Electric Drives – G. K. Dubey, Narosa Publications-2nd Edition. AC Machine Systems – Jingde Gao, Linzheng Zhang, Xiangheng Wang, Springer 						
		Course plan					
SI. No.	Crea 1	Experiments					
	Speed	control of Controlled rectifier based DC motor drive					
2	Speed	control of PMDC motor drive					
3	$\frac{Speed}{V/f}$ cor	atrol of three phase induction motors					
5	Vector	control of three phase induction motors.					
6	Speed	control of three phase synchronous motors					
7	Speed	control of BLDC motor drive					
8	Speed	control of SRM motor drive					
9	DSP based speed control of induction motor						
10	Dspace	e based speed control of induction motor					
11	Study	of VI characteristics of solar panel					
12	Study	of VI characteristics of fuel cell.					
13	Study	of characteristics of wind energy conversion system					

M.Tech Syllabi

- i) Practical Records /outputs 40%
- ii) Regular Class Viva-Voce 20%
- iii) Final Test (Objective) 40%

SEMESTER III

Course N	No.	Course Name	L-T-P C	redits	Year of Introduction
10EE710	95	FACTS CONTROLLERS	3-0-0	0:3	2015
Course P Basic k	Prerequi nowledg	sites we of Power Electronic Converts and Electrical 1	Power Tech	nnology a	t UG Level.
Course C	D bjectiv	es		inioiogy u	
The concontrol systems	urse is o techniq s.	designed to provide students knowledge of Fause and power quality improvements in A	ACTS Cor C Transm	ntrollers, i ission an	eactive power d Distribution
Syllabus	8				
The cond	cept of f	lexible AC transmission - reactive power contri	ol in electi	rical powe	er transmission
lines -un	icompen	stated transmission line – Overview of F.	ACIS dev	vices seri	itor (TCSC)
Unified 1	111011- 5 Power I	Elow controller (LIPEC) - Integrated Power	Flow Cor	troller (I	PFC - Special
Purpose F	FACTS	Controllers			rre) Special
Expected	I Outco	mes			
The stu	dents ar	e expected to apply the general principles of Fa	cts Control	lers to Tra	ansmission and
Distribu	ution sys	tem.			
Text boo	ks				
1. H	ingorani	, Understanding FACTS Controllers			
2. K	R Pad	iyar, FACTS controllers in Power Transmi	sion and	Distributi	on, New Age
pu	iblicatio	ns, New Delhi, 2007Utilization, Generation &	Conservati	ion of Ele	ctrical Energy,
	unil S.Ra	ao, Khanna publishers, 2007.	mhrin Done	and C	lagan Anglala
	amacho	Acha, Claudio R. Fuerle-Esquivel, Hugo A Facts Modelling and Simulation in power N	Indriz-Pere	ez and C	esar Anglele-
20	004	racts modening and Simulation in power is	ctworks, J	onn whey	a sons, Lu,
4. V	iiav K	Sood HVDC and Facts Controllers Applicat	tion of sta	tic conve	rters in power
sv	stems. F	Cluwer academic publishers. New York, Bostor	n London. I	ondon. N	loscow. 2004.
5. J.	Arrillaga	a, Y.H Liu and N. R Watson, Flexible	Power Tra	ansmissio	n the HVDC
or	otions.Jo	hn Wiley & Sons,Ltd, John Wiley & Sons	Ltd, The	Atrium, S	Southern Gate,
C	hicheste	r,	,	,	,
Eı	ngland, 2	2007			
		Course plan			
					Semester
Module		Content		Hours	Exam
			-		Marks (%)
т	FACTS	S Concept and General System Consideration	is. Power	0	15
1	FIOW 1	n AC System Definitions on FACIS. Basic	Types of	8	15
п	FAC IS Statio	South Compensators SVC and STATCOM (Ineration		
11	and Co	ntrol of TSC TCR STATCOM Compensator	r Control		
	Compa	rison between SVC and STATCOM STAT	COM for	6	15
	transie	nt and dynamic stability enhancement.			
		First Internal Examination			
	Static 3	Series Compensation. GCSC, TSSC, TCSC and	nd SSSC.		15
III	Operat	ion and Control. External System Control f	or Series	8	15
	Compe	nsators. SSR and its damping			

IV	Static Voltage and Phase Angle Regulators. TCVR and TCPAR. Operation and Control, Switching converter based Voltage and phase angle regulators, Hybrid phase angle regulators.	8	15	
	Second Internal Examination			
V	Combined Compensators, UPFC and IPFC. The Unified Power Flow Controller. Operation, Comparison with other FACTS devices, control of P and Q, Dynamic Performance, Multifunctional Facts Controllers.	8	20	
VI	Special Purpose Facts Controllers, NGH-SSR Damping Scheme, Thyristor-Controlled Braking Resistor (TCBR), Fault current Limiter(FCL), Thyristor controlled voltage limiter(TCVL)	6	20	
		42	100	
Cluster Level End Semester Examination				

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Course No.	Course No.Course NameL-T-P- CreditsYear of Introductio					
10EE7107	ELECTRIC VEHICLE SYSTEMS	3 - 0 - 0: 3	2015			
Course Prerequisites Basic knowledge of four stroke and two storke engines, Various type of motors used for traction purpose; DC series, Slip ring IM, Basics of Electrical Drives, Fuel Cell - UG Level.						
Course Objectiv This course is vehicles. This architectures, m sources, electric	Course Objectives This course is designed to understand electric vehicles and to develop design skills for electric vehicles. This course will introduce general aspects of Electric Vehicles (HEV), including architectures, modeling, sizing, vehicle control. It will cover vehicle dynamics, energy storage sources electric propulsion systems power electronics design and EV drives					
Syllabus Fundamentals of Ground Adhesion Vehicle Power Pl	Vehicle Propulsion and Brake: - Vehicle Resistance and Maximum Tractive Effort - Power Train Tract ant and Transmission Characteristics - Vehicle Perfo	ee - Dynamic Ed ive Effort and V ormance	quation - Tire– /ehicle Speed -			
Internal Combust engines – Wank brayton cycle eng	tion Engines – 4 stroke spark ignited and compress el rotary engines – strirling engines – gas turbin gines	ion ignited eng e engines – qu	ines – 2 stroke aasi isothermal			
Electric vehicles consumption	: configuration – performance – tractive effort	in normal driv	ving – energy			
Hybrid electric ve	ehicles: series and parallel electric drive trains					
Electric propulsion motor drives – SI	on systems: DC motor drives – Induction motor driv RM drives – SRM design	es – permanent	magnet BLDC			
Parallel (Mechan Methodology of Daily Driving D Transmission - R	nically Coupled) Hybrid Electric Drive Train D Series–Parallel (Torque and Speed Coupling) Hyb Distance - Energy Management Strategy - Energy egenerative Breaking - Control Strategy for Optimal	Design - Design rid Drive Train y Consumed in Energy Recove	and Control - Statistics of Braking and ery			
Fuel Cells - Fuel Storage	Cell Hybrid Electric Drive Train Design - Power	and Energy De	sign of Energy			
 Expected Outcomes Identify the various fundamentals in the traction design problems Understand the various factors that influence the vehicle tractive power and performance. Able to design hybrid electric vehicle system depending on the power requirement, input available, energy management requirement, alternate fuel system etc. Propose various electric driving motors and Power electronics drives systems for electrical vehicle. 						
Text books		nd				
1. Modern Electric Vehicles, Hybrid Electric and Fuel Cell Vehicles – 2 nd Edition – Meherdad Ehsani, Yimin Gao, Ali Emadi – CRC Press						
2. Electric Vehic	le Technology Explained – James Larminie, John Lo	owry – John Wi	ley & Sons			
3. Batteries for I Sources Techn	Electric Vehicles (Electronic & Electrical Enginee ology) - D Rand - Wiley-Blackwell (21 January 199	ering Research 98)	Studies Power			
4. Modern Electri Second Edition <u>Emadi</u> , Standa	ic, Hybrid Electric, and Fuel Cell Vehicles: Fundant (Power Electronics and Applications Series) - <u>Me</u> rdsmedia (2009)	amentals, Theor hrdad Ehsani, <u>Y</u>	y, and Design, <u>Zimin Gao, Ali</u>			

References

1. Propulsion System for Hybrid Vehicle" 2nd Edition" by John M. Miller

2. History of Electric Vehicles Bellis			
	Course plan		
Module	Content	Hours	Semester Exam Marks
I	Fundamentals of Vehicle Propulsion and Brake: - Vehicle Resistance - Dynamic Equation - Tire–Ground Adhesion and Maximum Tractive Effort - Power Train Tractive Effort and Vehicle Speed - Vehicle Power Plant and Transmission Characteristics - Vehicle Performance.	6	15
п	Internal Combustion Engines – 4 stroke spark ignited and compression ignited engines – 2 stroke engines – Wankel rotary engines – strirling engines – gas turbine engines – quasi isothermal brayton cycle engines Electric vehicles: configuration – performance – tractive effort in normal driving – energy consumption Hybrid electric vehicles: series and parallel electric drive trains	8	15
	First Internal Examination		
ш	Electric propulsion systems: DC motor drives – Induction motor drives – permanent magnet BLDC motor drives – SRM drives – SRM design	6	15
IV	Parallel (Mechanically Coupled) Hybrid Electric Drive Train Design - Design and Control Methodology of Series–Parallel (Torque and Speed Coupling) Hybrid Drive Train - Statistics of Daily Driving Distance	8	15
	Second Internal Examination		
V	Energy Management Strategy - Energy Consumed in Braking and Transmission - Regenerative Breaking - Control Strategy for Optimal Energy Recovery Fuel Cells -	8	20
VI	Fuel Cell Hybrid Electric Drive Train Design - Power and Energy Design of Energy Storag	6	20
Total		42	100
	Cluster Level End Semester Evamination		

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Course	e No.	Course Name	L-T-P- Credits	Year of Introduction	
10EE7	7109	INDUCTION GENERATORS	3-0-0-3	2015	
Course P Basic k	Prerequination	sites ge of Induction machine at UG Level.			
Course C 1. 2. 3. 4.	Dbjectiv To deve This cou Inductio Enable s Underst	es lop understanding of techniques to analyze induction get urse is designed to understand the application and chara on generator in different power generating area. students to do transient modeling of induction generators and the vector, scalar and field oriented control of induct	nerators. acteristics and simul- tion genera	of various types lation. ators.	
Syllabus					
Steady st induction vector co synchrone alternativ	ate mod generationtrol – ous mo re source	lel of Induction Generator–doubly fed induction gene tor: Self excited induction generator-Scalar control – - Doubly fed induction generators: features – sub des of operation– stand alone DFIG-Applications of es of energy.	rator-Tran backgroun synchron induction	sient models of d and schemes, ous and super n generators in	
 Expected Outcomes Able to model the steady state and transient models of induction generator for various operating conditions. Understand the characteristics and operational features on induction generators. Analyze the factors to optimize maximum power output from an induction generators. Describe the working and control of DFIG and its application. 					
Text boo	ks				
1. M A	 Modeling and Analysis with Induction Generators, Third Edition, M. Godoy Simões, Felix A. Farret, CRC Press. 				
Refere 1. M In 2. V	e nces I Godoy iduction ladislay	Simoes, Felix A Farret, Alternative Energy Systems – D Generators, CRC Press Akhmatov, Induction Generators for wind power – Mult	esign and	Analysis with	
		Course plan	<u> </u>	6	
Module		Content	Hour	s Semester Exam Marks	
I	Steady represe induced measur – doub	state model of Induction Generator: Classical steady state entation of the asynchronous machine – generated power d torque – representation of induction generator losses rement of parameters – high efficiency induction generat ly fed induction generator	tte 8 or	15	
п	Transient models of induction generator: Induction machine in transient state – state space based modeling of induction generator – partition of state matrix with RLC load – transient simulation of induction generators15				
	[First Internal Examination- 15 Marks		· · · · · · · · · · · · · · · · · · ·	
ш	Self ex curves	and self excitation – mathematical description of se	on 8 elf	15	

	excitation process – series capacitors and composed excitation – characteristics and construction features of induction generator		
IV	Scalar control – background and schemes, vector control – axis transformation – space vector notation – field oriented control.	6	15
	Second Internal Examination- 15 Marks		
V	Optimized control for induction generators – optimization principles – hill climbing control based maximum power search – fuzzy logic control based maximum power search.	8	20
VI	Doubly fed induction generators: features – sub synchronous and super synchronous modes – operation – interconnected and stand alone operation – field oriented control – active and reactive power control – stand alone DFIG-Applications of induction generators in alternative sources of energy	6	20
Total		42	100
Cluster Level End Semester Examination			

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Course	e No.	Course Name	L-T-P- Credits	Year of Introduction		
10EE711	.1	CUSTOM POWER DEVICES	3-0-0:3	2015		
Course P Basic k	Course Prerequisites Basic knowledge of Electrical power systems and power electronics at UG Level					
Course C	Dbjectiv	es				
The cou	urse is de	esigned to provide students a strong background in th	e design and	development of		
custom	power d	levices for power quality improvement				
Syllabus	5					
Power qu	uality –F	ower electronic application in Transmission system	ns and distrib	SSTS systems-		
Custom p	ower de	ATCOM companyator for single phase and three phase	S- SSCL, SSB	, SSIS, custom B. Bootifier and		
power pa	IK- DSI	ted DVR structure UPOC structure and control of	se loads - DV	right shunt		
UPOC-A	ctive filt	ers-shunt series hybrid filters	ient siluint a	ind fight shuft		
Expected	l Outcoi	mes				
• Id	lentify th	e various issues in power quality				
• Te	o analyse	the classification of custom power devices.				
• To	o anlyse	the network configuring type custom power devices				
• Te	o analyse	e the compensation type custom power devices				
• To	o design	shunt connected DSTATCOM for power quality imp	rovement			
• To	o design	DVR and UPQC for power quality improvement				
• To	o analyse	e the principles of CVT and UPS for power quality in	nprovement			
Referren	ices		•			
1)	L Ghos	h and G Ledwich,"Power quality enhancement usi	ng custom p	ower Devices,"		
	Kluwer	Publications, London, 2003				
2)	K R Pa	diyar, "FACTS controllers in Power Transmision a	and Distribut	ion," New Age		
	publicat	ions, New D elhi, 2007				
3)	R Sastr	y Vedam,"Ppower quality VAR compensation in p	ower system	s," CRC press,		
	NewYo	rk,2009	1			
4)	H Aka	gi, New Irends in active filters for power	conditioning	, IEEE TIA,		
5)	VOI.32,n D Singh	0.0, pp1312-1322, 1990. Diversion Discourse and Discourse a	and Dating V	SC With a Zig		
	D Shigh Zag Tra	, F Jayaplakasii, K Soillayajulu, D F Kolliali, Kedu	base Four-W	SC will a Zig-		
	System"	² IFFE Transactions on Power Delivery Vol 24 Ian	2009	Te Distribution		
	<u>bystem</u>	Course plan	. 2007.			
				Semester		
Module		Content	Hours	Exam		
				Marks (%)		
	Power	quality -Power electronic application in Transmiss	ion			
	system	s and distribution systems-distributed generation- Po	wer			
Ι	quality	terms -transients, over voltage, under voltage, s	ag, 8	15		
	swell,	harmonics, flicker- PQ problems-poor power fac	tor,	_		
	unbalai	nced loads, disturbances in supply voltage.				
	Custor	nowar devices Network configuring and compared	ina			
	devices	SSCI SSB SSTS custom nower park Structure	ing and 6			
II	control	of power converters-open loop voltage control	and 0	15		
	closed	loop voltage control- custom power park				
	closed	First Internal Examination				
	DSTA	ΓCOM-compensator for single phase and three ph	ase	15		
111	loads	-generating reference current using instantane	ous 8			

M. Tech Program in Power Electronics & Drives (Cluster No:10)

	reactive power theory and SRF theory- reference signal		
	Nextual arrange from the second secon		
IV	systems- zig-zag transformers- active techniquesthree phase four wire DSTATCOM – Various structures-design and simulation methods. A case study	6	15
	Second Internal Examination		
	DVR-Rectifier supported and capacitor supported-DVR		
V	structure – DVR control- reference signal generation- design and simulation methods- A case study	8	20
	UPOC structure and control of left shunt and right shunt		
VI	UPQC-Active filters-shunt, series, hybrid filters-Uninterrupted Power supplies- Constant Voltage Transformers	6	20
	<u> </u>	42	100
Cluster Level End Semester Examination			

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Course	Course No. Course Name			Year of Introduction
10EE7	113 ANALYSIS, MODELLING AND CONTROL OF ELECTRIC DRIVES	3 -	-0 - 0 : 3	2015
Course F	Prerequisites nowledge of Electrical machines and drives at UG Level			
Course (Dijectives			
To impar	t analysis modeling and control of electric drives			
Syllabus			_	~
Modeling	and Control of DC Machines- Synchronous Machine Mode	ling (Concepts-	Control of
Synchron	Ous Machine Drives- Induction Machine Modeling Concept	s- Co	ntrol of Inc	luction
Expected	Drives- Switched Reluctance Drive Systems			
The stu	dents are expected to apply the modeling concepts to electric	c driv	es.	
Text boo	ks		•	
1 Donck	er WIPulle Andre Veltman Advanced electric Drives V	[مطم]]	ing Analys	vis and Control
- Spri	inger	louen	ing Analys	
2. Kraus	PC, Analysis of Electrical Machines, Mc Graw Hill Book C	ompa	ny	
3. Paul C	Krause, Oleg Wasynczuk, sCott D. Sudhoff, Analysis of El	ectric	Machiner	y and Drive
System	n, Wiley Interscience			
	Course plan			
Module	Content		Hours	Semester Exam Marks (%)
I	Modeling and Control of DC Machines- Separately Excited, Current-Controlled DC Machine, Field-Oriented Machine Model, Control of Separately Excited DC Machines		8	15
II	Synchronous Machine Modeling Concepts- Non-sa Machine- Salient Synchronous Machine	lient	6	15
	First Internal Examination			
	Control of Synchronous Machine Drives- Control of Nor	1-		
III	salient Synchronous Machines- Control of Salient Synchro Machines- Field-Oriented Control of a Current-Controlled Synchronous	nous	8	15
	Machine- Field-Oriented control of a Voltage-Source			
	Connected Synchronous Machine.	•		
IV	 Induction Machine Modeling Concepts- Induction Machine with Squirrel-Cage Rotor- Zero Leakage Inductance Models of Induction Machines- Machine Models with Leakage Inductances- Parameter Identification and Estimates- Single-Phase Induction Machines. 		6	15
	Second Internal Examination		T	Γ
	Control of Induction Machine Drives- Voltage-to-Frequ	ency		
V	(V/f) Control- Field-Oriented Control- Operational I Boundaries for Rotor Flux Oriented Control. Field Weake for Rotor Flux Oriented IM Drives- Interfacing FOC Current-Controlled IM- Interfacing FOC with Voltage-Sor Connected IM	Drive oning with urce-	8	20
VI	Switched Reluctance Drive Systems- Basic Machine Concepts- Operating Principles- Multi-Phase Machines- Control of Switched Reluctance Drives		6	20

40

100

	42	100
Cluster Level End Semester Examination		

Internal Continuous Assessment: 40 marks

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Course	No.	Course Name	L- Cr	T-P- redits	Year of Introduction	
10EE711	15	ADVANCED CONTROL OF PWM INVERTER FED INDUCTION MOTORS	3 - 0	-0:3	2015	
Course I Basic k	Course Prerequisites Basic knowledge of Electrical Machines and drives at UG Level					
Course (Objecti	ves				
To develo	on und	erstanding of techniques of control of PWM Inverter f	fed Inc	luction M	otors	
Syllabus	<u>s</u>					
Principle	s for ve	ector and field-oriented control - Complex-valued dq-	-mode	l of induc	tion machines-	
Generaliz	zed flux	x-vector control- Parameter sensitivity- Principles for	speed	sensor-le	ss control	
Expected	d Outc	omes		1	, ·	
The stu	ldents	are expected to apply the general principles of pow	er qua	ality impi	ovement using	
Referrer	nces					
1)	Extra	ct of D. W. Novotny and T. A. Lipo, Vector Co	ontrol	and Dy	namics of AC	
,	Drives	, Oxford University Press, 1996.		J		
2)	P. L.	Jansen and R. D. Lorenz, A Physically Insightful	Appro	bach to t	he Design and	
	Accura	acy Assessment of Flux Observers for Field Oriente	ed Ind	uction M	lachine Drives,	
3)	IEEE	Irans. on Industry Applications, vol. 30, No. 1, Jan./F		994, pp. 1 Press 100	01110.	
(3) (4)	I. Hol	tz and K Rajashekara Methods for Speed Sensorl	ess Co	ontrol of	AC Drives in	
.,	Sensor	less Control of AC motors. IEEE Press Book, 1996.				
5)	R. W.	De Doncker and D. W. Novotny, The Universal Fi	eld Or	riented C	ontroller, IEEE	
	Trans.	on Industry Applications, Vol. 30, No. 1, Jan./Feb. 1	994, p	p. 92100		
6)	J. Hol	tz, The Representation of AC Machine Dynami	cs by	Comple	x Signal Flow	
	Graph	s, IEEE Transactions on Industrial Electronics, Vol. 4	2, No.	3, 1995,	pp. 263271.	
		Course plan	r			
Module		Content		Hours	Semester Exam Marks (%)	
Ι	Comp Vecto equiv	blex vector analysis of induction machines- com or Equivalent circuit- turns ratio and d,q models, mod alent circuits	plex ified	8	15	
п	Princ contro	iples for vector and field-oriented DC Machine To ol- requirements for torque control- synchronous mac r control- Synchronous Machine Steady state d a Ma	rque hine	6	15	
	Tora	e control implementations of synchronous machines.	Juci			
	1014	First Internal Examination	1			
	Curre	ent controllers in stationary and synchronous coordin	ates			
III	Roton	-flux oriented control of current-regulated induc ine - Dynamic model of IM in rotor-flux coordin	ction ates.	8	15	
	Indire orient	ect rotor-flux oriented control of IM - Direct rotor ted control of IM Methods to estimation of rotor-flux	-flux x			
IV	Gener	ralized flux-vector control using current- and volupling networks Current and voltage decourt	ltage oling	6	15	
IV	netwo	orks. Airgap-oriented control. Voltage-fed vector cor r-flux oriented vector control.	ntrol.	U	15	
		Second Internal Examination				
V	Paran	neter sensitivity, selection of flux level and	field	8	20	

M. Tech Program in Power Electronics & Drives (Cluster No:10)

	weakening - Parameter detuning in steady-state operation. Parameter detuning during dynamics. Selection of flux level. Control strategies for used in the over-speed region.		
VI	Principles for speed sensor-less control - Principles for speed sensor-less control. Sensor-less methods for scalar control. Sensor-less methods for vector control .Introduction to observer-based techniques.	6	20
		42	100
Cluster Level End Semester Examination			

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Course	e No.	Course Name	L-T Cree	'-P- dits	Year of Introduction		
10EE711	7	SOFT COMPUTING TECHNIQUES	3 - 0 -	0:3	2015		
Course F Basic k	Course Prerequisites Basic knowledge of Engineering at UG Level						
Course (Objectiv	es					
1.	Learn	the various soft computing techniques					
2.	Be far	niliar with design of various neural networks.					
3.	Learn	genetic programming.					
4.	Be exp	bosed to hybrid systems.					
Syllabus	5	· · · ·					
Fuzzy Se	et Theo	ry, Regression and Optimization, Neural Netwo	orks, Ne	euro-Fuz	zy Modeling,		
Advanced	d Neuro-	Fuzzy Modeling, Neuro-Fuzzy Control, Advanced	Applicat	ions.			
Expected	l Outco	mes					
The stude	ents are o	expected to apply the soft computing techniques in E	Electrica	l Engine	ering control		
applicatio	ons.						
Reference	es						
1)	S.Rajase	ekaran and G.A.Vijayalakshmi Pai, "Neural Netwo	rks, Fuz	zy Log	ic and Genetic		
	Algorith	m: Synthesis & Applications", Prentice-Hall of Indi	a Pvt. L	td., 200	5.		
2)	George	J. Klir, Ute St. Clair, Bo Yuan, "Fuzzy Se	et Theo	ory: For	undations and		
	Applica	tions" Prentice Hall, 1997.		1 7 6 1			
3)	David E	E. Goldberg, "Genetic Algorithm in Search Optimiz	zation ai	nd Maci	nine Learning"		
1)	Pearson	Education India, 2013.	A 1		alizations and		
4)	James F	A. Freeman, David M. Skapura, Neural Networks	Algorith	ims, Ap	plications, and		
5)	Program	Iming Techniques, Pearson Education India, 1991.	tion" So	aand E	lition Deerson		
- 5)	Education 1	naykili, Neurai Networks Comprehensive Founda	tion se	COLL EC	inion, Pearson		
6)		ng CT Sun and E Mizutani "Neuro Euzzy and Sc	oft Com	outina"	DHI / Dearson		
0)	J.S.K.Ja Educatio	ng, C.1. Sun and E.Iviizutani, Neuro-Puzzy and Scon 2004	n com	juting ,	1111 / 1 carson		
7)	S N Sive	anandam and S N Deena "Principles of Soft Com	nutino"	Wilev	India Pvt Ltd		
')	2011.	anandam and 5.17.Deepa, Trincipies of Soft Com	puting,	where y	india i vi Lia,		
		Course plan					
					Semester		
Module		Content]	Hours	Exam		
					Marks (%)		
	Introdu	ction to Neuro-Fuzzy and Soft Computing, Fuzzy S	et				
Ι	Theory	y, Fuzzy Sets Fuzzy Rules and Fuzzy Reasoning, Fuz	zzy	8	15		
	Inferen	ce Systems.					
	Regres	sion And Optimization, Least-Squares Methods for					
п	System	Identification, Derivative-Based Optimization,		6	15		
	Deriva	tive-Free Optimization.			15		
	.	First Internal Examination					
	Neural	networks, Adaptive Networ, Supervised Learning			1.5		
III	Neural	Networks, Learning from Reinforcement, Unsuperv	vised	8	15		
	Learnii	ng and Other Neural Networks.					
	NT						
TT 7	Neuro-	Tuzzy modeling, ANFIS: Adaptive-Networks-based		6	1.5		
11	Fuzzy .	Interence System, Coactive Neuro-Fuzzy Modeling:		0	15		
	roward	is Generalized AINFIS.					

	Second Internal Examination			
V	Advanced Neuro-fuzzy modeling, Classification and Regression Trees, Data Clustering Algorithms, Rule base Structure Identification, Neuro-Fuzzy Control, Neuro-Fuzzy Control.	8	20	
VI	Advanced applications, ANFIS Applications, Fuzzy-Filtered Neural Networks, Fuzzy Theory and Genetic Algorithms in Game Playing, Soft Computing for Color Recipe Prediction.	6	20	
		42	100	
Cluster Level End Semester Examination				

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.
Course	e No.	Course Name	L-7 Cre	Γ-P- edits	Year of Introduction
10EC7	7207	MICRO ELECTRO MECHANICAL SYSTEMS	3-0	-0- 3	2015
Course F	Prerequi	sites			
Basic k	nowledg	ge of electronic and mechanical components at UG/PG	Level		
Course (Jbjectiv	es	1		
The cou	urse 1s d	esigned to provide students a strong background and fu	indan	nental b	asis of MEMS
and dev	vices, su	ch as microactuators and microsensors, as well as their j	princ	iples of	operation.
Syllabus			• •	<i>.</i>	Ъ.С.
Overvie	ew Of I	Alems, Micro Fabrications And Micromachining, Phy	sical	Micros	sensors, Micro
Actuato	ors, Case	Studies			
Expected	1 Outco	nes	1		
actuato	rs, micro	expected to apply working principles of current osystem conceptual design of microdevices and systems	iy av	allable	microsensors,
 References 1. Marc Madou, "Fundamentals of Microfabrication", CRC press 1997. 2. Stephen D. Senturia," Micro system Design", Kluwer Academic Publishers,2001 3. B.H. Bao, "Analysis and design principles of MEMS Devices", Elsevier, 2005. 4. Tai Ran Hsu ,"MEMS and Microsystems Design and Manufacture", Tata McGraw Hill, 2002. 5. Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006. 					
Module		Content		Hours	Semester Exam Marks (%)
	OVER	VIEW OF MEMS: History of MEMS, MEMS a	nd		
Ι	Micros	ystems, Scaling laws in Miniaturization. Materials	for	6	15
	MEMS	and Microsystems.			
п	MICR Micros process Oxidat	O FABRICATIONS AND MICROMACHININ ystem Design and Fabrication, Microsystem fabrication ses- Photolithography, Ion Implantation, Diffusion	G: ion on,	4	15
	Chemi	cal and Physical Vapor deposition. Deposition	bv		
	Epitaxy	y, Etching. Bulk Micro manufacturing, Surfa	ace	4	
	micron	nachining, LIGA process.			
	First Internal Examination				
	PHYS	ICAL MICROSENSORS: Design of Acoustic wa	ave	_	15
III	sensors	, resonant sensor, Vibratory gyroscope, Capacitive a	ind	8	15
	Piezo I	Resistive Pressure sensors			
IV	MICR sensors	OSENSORS: Engineering mechanics behind these Mic.	cro	6	15
		Second Internal Examination			
	MICR	OACTUATORS: Design of Actuator, Actuation usi	ing		
	therma	l forces, Actuation using shape memory Allo	ys,	4	
V	Actuat	ion using piezoelectric crystals.			20
	Actuat	ion using Electrostatic forces (Parallel plate, Torsion b	oar,	4	
	Comb	drive actuators), Micromechanical Motors and pumps.		•	
1 7 1		STUDIES: Ink jet pointer heads, Micro mirror	ľV	-	20
VI	Project	or, DNA chip, Micro arrays, and KF electronic devices.		6	20
	Total			10	
1			[42	

Internal Continuous Assessment: 40 marks

Internal continuous assessment is in the form of periodical tests, assignments, seminars or a combination of all whichever suits best. There will be minimum of two tests per subject. The assessment details are to be announced to students' right at the beginning of the semester by the teacher.

Two internal tests, each having 15 marks each summing to a total of 30 marks Tutorials / Assignments / Course Seminars summing to a total of 10 marks, and Cluster level end-semester examination having 60 marks

Course 3	No. Course Name	L - T - P - Credits	Year of Introduction		
10EE71	01 SEMINAR - II	0-0-2-2	2015		
 Course Prerequisites (1) The habit of reading technical magazines, conference proceedings, journals etc.; (2) Knowledge in technical writing and communication skills earned through seminar at UG level and in first semester; (2) The sewing Seminar L in the first semester. 					
(3) The Course C 1) To re 2) To 3) To di 4) To 5) To Guideling Student	 (3) The course Seminar-I in the first semester. Course Objectives To enhance the reading ability required for identification of the thesis area and its literature review. To develop skills regarding professional communication and technical report writing; To establish the fact that student is not a mere recipient of ideas, but a participant in discovery and inquiry. To arrive at a conclusion for doing Project Phase I. To learn how to prepare and publish technical papers. Guidelines Students have to present a second seminar in 3rd semester. It is highly recommended that seminar-				
2 may report the literature survey being conducted as a requirement for doing the main project. Since the topic for the main project topic is to be finalized at the end of the second semester/ in the beginning of the 3 rd semester, one can perform the literature search and present it as a seminar towards the middle of the semester. The Progress Evaluation Committee (PEC) formed in the second semester itself, may be the panel of evaluators for Seminar-II also. The presentation of seminar-II shall be of 20 minutes duration with another 5 minutes allocated for a discussion session. The committee shall evaluate the seminar based on the style of presentation, technical context, and coverage of the topic, adequacy of references, depth of knowledge and the overall quality. Moreover, each student has to submit a seminar report in the prescribed format given by the Institution. It is recommended that the report for seminar-II may be in the form of a technical paper which is suitable for publishing in Conferences / Journals as a review paper. This makes a student learn how to publish a paper and consequently develops a publishing culture among the					
Expected	Expected Outcomes				
 At the end of the course students will be able to: Be motivated in reading which equip them in identification of thesis area and its literature review; Develop the capacity to observe intelligently and propose and defend opinions and ideas with tact and conviction; Develop skills regarding professional communication and oral presentation; Arrive at a conclusion for doing Project Phase 1; Develop skills for technical report writing Learn the methodology of publishing technical papers. 					
 M. Ashraf Rizvi, <i>Effective Technical Communication</i>, Tata McGraw Hill, New Delhi, 2005 Day R A, <i>How to Write and Publish a Scientific Paper</i>, Cambridge University Press, 1989 Coley S M and Scheinberg C A, <i>Proposal Writing</i>, 1990, Newbury Sage Publications. 					
Course plan					
Item	Description	Tim	ie		
1	Abstract Submission	3 Wee	eks		
2	Allotment of Topic and Scheduling Seminars	1 We	ek		
3	Literature Review and Presentation Sessions	6 Wee	eks		
4	Report Submission	3 Wee	eks		
5	Publishing Grades	1 We	ek		

M. Tech Program in Power Electronics & Drives (Cluster No:10)

M.Tech Syllabi

- 1. Presentation (Verbal & Nonverbal Communication skills) : 20 Marks
- 2. Breadth of the literature review (Coverage : Content of the slides and speech) : 20 Marks
- 3. Depth of knowledge (Ability to answer questions) : 30 Marks
- 4. Seminar Report / Paper in the prescribed format given by the Institution : 30 marks

Course No.	Course Name	L - T - P - Credits	Year of Introduction		
10EE7103	PROJECT(PHASE I)	0 - 0 - 12 : 6	2015		
Course Prerequisites					
(1) The habit of reading technical magazines, conference proceedings and journals;					
(2) Interest solving in socially relevant or research problems;					
(3) Skills in hardware/software implementation techniques earned from UG studies and the mini					
project done in second semester;					
(4) The courses Research Methodology, Mini Project, and Seminar-2 done in previous semesters.					
Course Objectives					
(1) To start experimentation based on the background knowledge acquired through the literature					

 To start experimentation based on the background knowledge acquired through the literature survey performed for seminar-II;

(2) To work on the topic, familiarize with the design and analysis tools required for the project work and plan the experimental platform, if any, required for project work;

(3) To develop the skill of identifying research problems/ socially relevant projects;

(4) To enhance the skills regarding the implementation aspects of hardware/ software projects.

Guidelines

Each student has to identify a topic related to the branch of specialization for his/her main project under the guidance of a faculty member and the related experimentations namely project - phase I, should be started in the 3rd semester. The project topic has to be approved by a committee constituted by the department. This committee, namely Progress Evaluation Committee (PEC), should study the feasibility of each project work before giving consent. It is recommended that students should execute the project work using the facilities of the institute itself. However, external projects can be taken up in the 4th semester, if that work solves a technical problem of the external firm. Prior sanction should be obtained from the Head of Institution before taking up external project work.

Project work is to be carried out in the 3rd and 4th semesters and also to be evaluated in both semesters. It is recommended that the same faculty member may serve as his/her Project Supervisor during 4th semester also. This project phase is conceptualized in such a way that, the outcomes of the work may be continued for the project - phase II. Hence on completion of this project phase, the student will make a presentation based on the work and suggest future plan for his project - phase II. The implementation of the project - phase I can be software and/or hardware based one. This project phase is also envisaged as a way for implementing *problem based learning*. Problems of socially relevance and/or problems identified by the institute/ research organizations/ industry/ state should be given high priority. In such interdisciplinary and inter institutional projects, a student can have co-guide(s) from other department/ institute/ research organizations/ industry. The university encourages *interdisciplinary projects* and *problem based learning strategy*. The following guidelines also have to be followed.

- 1. The student will submit a detailed *project report* for project -phase I;
- 2. The student will present at least two seminars;
- 3. The *first one* in the beginning of the semester will highlight the topic, objectives and methodology;
- 4. A progress seminar can be conducted in the middle of the semester (optional);
- 5. The *third seminar* will be an end-semester presentation of the work they have completed till the end of the 3rd semester and the scope of the work which is to be accomplished in the 4th semester, mentioning the expected results.

All such presentations are to be evaluated internally by the progress evaluation committee (PEC). All the references cited in the report for project - phase I shall be *authentic*.

Expected Outcomes

The students are expected to :

(1) Develop the skill of identifying industrial/ research problems/ socially relevant projects;

(2) Develop skills regarding enumerating and selecting problems, subsequent analysis, and

effective implementation of the solution;

- (3) Have hands on experience in design and analysis tools required for the project work;
- (4) Plan the experimental platform, if any, required for project work, which will be helpful in actual real life project planning;
- (5) Enhance the skills regarding the implementation aspects of hardware/ software projects;
- (6) Acquire documentation and problem solving skills;
- (7) Develop professionalism;
- (8) Effectively communicate technical information by means of written and oral reports.

References

- 1. J.W. Bames, Statistical Analysis for Engineers and Scientists, McGraw Hill, New York.
- 2. Schank Fr., *Theories of Engineering Experiments*, Tata McGraw Hill Publication.
- 3. Douglas C Montgomery, Design and analysis of experiments, Wiley International
- 4. Leedy P D, *Practical Research : Planning and Design*, 4th Edition, N W MacMillan Publishing Co.

Course plan			
Item	Description	Time	
1	Abstract Submission	2 Week	
2	Allotment of Topic	1 Week	
3	Preliminary Presentation Sessions	1 Week	
4	Implementation Phase	9 Weeks	
5	Final Presentation-cum Demonstration	1 Week	

Marks: 50 for Project Progress Evaluation

- 1. Preliminary presentation, evaluated by the PEC: 15 Marks
- 2. Progress evaluation by the Project Supervisor/s: 20 Marks
- 3. End-semester presentation, evaluated by the PEC: 15 Marks

FOURTH SEMESTER

Course No.	Course Name	L - T - P - Credits	Year of Introduction	
10EE7104	PROJECT (PHASE -II)	0 - 0 - 24 - 12	2015	
Course Preree	quisites			
(1) The habit	of reading technical magazines, conference prod	ceedings and journals;	, 9	
(2) Interest in	n solving socially relevant or research problems;	C J ,		
(3) Skills in	hardware/ software implementation techniques ea	arned from UG studies	s and mini	
project in	the second semester;			
(4) The cour	ses Research Methodology, Seminar-II and Proje	ct - Phase I done in pr	revious	
semesters	8.			
Course Objec	tives			
(1) To imple	ment and complete the M. Tech. thesis work, wh	ich is normally based	on Project -	
Phase 1;				
(2) To have a	continuous work on the topic, and get improved	results;		
(3) To develo	op the skill of achieving specific research target i	n a limited time;		
(4) To develo	pp skills regarding professional communication a	nd technical report wi	riting.	
Guidelines				
Each student	has to complete the project - phase II under the	e guidance of a facul	lty member, as	
specified in	phase-I, since this phase is generally an exte	ension of the previou	us phase. It is	
recommende	d that students should execute the project work	c using the facilities	of the institute	
itself. Howev	ver, external projects can be taken up in this sem	ester, if that work sol	ves a technical	
problem of t	he external firm. Prior sanction should be obt	ained from the Head	l of Institution	
before taking	g up external project work. This project phas	se is also envisaged	as a way for	
implementing	g problem based learning. Problems of socially 1	relevance and/or prob	lems identified	
by the instit	ute/ research organizations/ industry/ state show	uld be given high pr	iority. In such	
interdisciplin	ary and inter institutional projects, a student	can have co-guide((s) from other	
department/ institute/ research organizations/ industry. The university encourages				
interdisciplinary projects and problem based learning strategy. The following guidelines also				
have to be to	llowed.	TT		
1. The stu	dent will submit a detailed report for project - ph	ase II;		
2. The stu	dent will present at least <i>three</i> seminars		• • • •	
3. The fir	3. The <i>first seminar</i> in the beginning of the semester will highlight the topic, objectives,			
method	ology and the background knowledge and preli	minary results carried	over from the	
phase I	; ;	L		
4. A prog	ress seminar can be conducted in the middle of the	ne semester;	on of the work	
J. The Init	ra seminar, could be a pre-submission seminar	ha acona for futura x	uorly The pro	
uley ha	the completed the the end of 4 semister and t	reas evoluation comm	work. The pre-	
boing	sion seminar has to be presented before the Frog	ork This would be	the qualifying	
evercise	a for the students for getting approval from the	the Department Com	mittee for the	
cubmis	tion of the Thesis	the Department Com	innuee for the	
6 Incorpo	proting the suggestions by the PEC each student	has to convert the pro-	oiect - nhase II	
report t	o a Thesis and to submit to the University (Clus	ter) for external evalu	uation At least	
one tec	chnical paper is to be published in Journals	/ Conferences so a	s to meet the	
require	ments for final external submission	7 Conferences so a	s to meet the	
7. The U	niversity will appoint an External Expert to e	valuate the Thesis t	hrough a final	
nresent	ation by the student		in Sugir u finul	
The commen	ts of the examiners during this presentation sho	uld be incorporated in	n the work and	
the approved	Thesis is to be submitted to the Institution as ha	rd bound copies, befo	ore the program	

exit by the student. All the references cited in the Thesis shall be *authentic*.

Expected Outcomes

The students are expected to :

- (1) Develop the skill of identifying industrial/ research problems/ socially relevant projects;
- (2) Develop skills regarding enumerating and selecting problems, subsequent analysis, and effective implementation of the solution;
- (3) Have hands on experience in design and analysis tools required for the project work ;
- (4) Plan the experimental platform, if any, required for project work, which will be helpful in actual real life project planning;
- (5) Enhance the skills regarding the implementation aspects of hardware/ software projects;
- (6) Acquire documentation and problem solving skills;
- (7) Develop professionalism;

(8) Effectively communicate technical information by means of written and oral reports.

References

- 1. J.W. Bames, Statistical Analysis for Engineers and Scientists, McGraw Hill, New York.
- 2. Schank Fr., *Theories of Engineering Experiments*, Tata McGraw Hill Publication.
- 3. Douglas C Montgomery, Design and analysis of experiments, Wiley International
- 4. Leedy P D, *Practical Research : Planning and Design*, 4th Edition, N W MacMillan Publishing Co

Course plan			
Item	Description	Time	
1	Implementation Phase	10 Weeks	
2	Thesis Preparation	3 Weeks	
3	Pre-submission seminar-cum Demonstration	1 Week	
4	Evaluation by the External expert	4 Weeks	

Marks: 100 for Final Evaluation

1. Preliminary presentation, evaluated by the PEC: 20 Marks

2. Project evaluation by the supervisor/s: 30 Marks

3. Pre-submission seminar evaluated by the PEC: 20 Marks

4. Evaluation of the thesis presentation by an External Expert: 30 Marks

ASSESSMENT CRITERIA

A. Evaluation of Theory Courses

The university follows a continuous academic evaluation procedure. This includes two internal examinations and one end semester cluster level University examination. Besides, students should be given proper assignments / course seminars which are essential aspects of a student-centric teaching approach. The continuous assessment procedure and corresponding weights for awarding 100 marks for a theory subject are as follows.

- 1. Two internal tests, each having 15 marks each summing to a total of 30 marks
- 2. Tutorials / Assignments / Course Seminars summing to a total of 10 marks, and
- 3. Cluster level end-semester examination having 60 marks

B. Evaluation of Research Methodology

The course Research Methodology should be a common one for all specializations, which is envisaged to provide a research orientation for PG students. The teaching - learning process for this course should be a student-centric one in which the faculty-in-charge would take the role of a facilitator in the system. Students should be given proper guidelines for practicing the various methodologies which aims at the overall improvement of their skills required for pursuing research. The continuous assessment procedure and corresponding weights for awarding 100 marks (fully internal) for Research Methodology are as follows.

- 1. Three internal tests, each having 20 marks summing to a total of 60 marks
- 2. Tutorials / Assignments / Course Seminars summing to a total of 40 marks

C. Evaluation of Practical Courses

The continuous assessment procedure and corresponding weights for awarding 100 marks for a practical subject are as follows.

- 1. Practical Records / Results summing to a total of 40 Marks
- 2. Regular Class Viva-Voce summing to a total of 20 Marks
- 3. Final Test (Internal & Objective Type) having 40 Marks

D. Evaluation of Seminar -I

The weights for awarding 100 marks (totally internal) for the seminar-I is as follows.

- 1. Presentation (Verbal & Nonverbal Communication skills) : 20 Marks
- 2. Breadth of the topic (Coverage : Content of the slides and speech) : 20 Marks
- 3. Depth of knowledge (Ability to answer questions) : 30 Marks
- 4. Seminar Report in the prescribed format given by the Institution : 30 marks

E. Evaluation of the Mini Project

The weights for awarding 100 marks (totally internal) is as follows.

1. Preliminary Presentation evaluated by the Progress Evaluation Committee (PEC) : 20 Marks

- 2. Progress Evaluation (Guide and/or Co-guide): 30 Marks
- 3. Final Presentation-cum-demonstration evaluated by the PEC: 30 Marks
- 4. Report (Mandatory): 20 Marks

F. Evaluation of Seminar-II

The weights for awarding 100 marks (totally internal) for the seminar-II is as follows.

- 1. Presentation (Verbal & Nonverbal Communication skills) : 20 Marks
- 2. Breadth of the literature review (Coverage : Content of the slides and speech) : 20 Marks
- 3. Depth of knowledge (Ability to answer questions) : 30 Marks
- 4. Seminar Report / Paper in the prescribed format given by the Institution : 30 marks

G. Evaluation of the Project Work

The weights for awarding 150 marks for Project shall be as follows.

- A. 3rd Semester Marks: 50 for Project Progress Evaluation
 - 1. Preliminary presentation, evaluated by the PEC: 15 Marks
 - 2. Progress evaluation by the Project Supervisor/s: 20 Marks
 - 3. End-semester presentation, evaluated by the PEC: 15 Marks
- B. 4th Semester Marks: 100 for Final Evaluation
 - 1. Preliminary presentation, evaluated by the PEC: 20 Marks
 - 2. Project evaluation by the supervisor/s: 30 Marks
 - 3. Pre-submission seminar evaluated by the PEC: 20 Marks
 - 4. Evaluation of the thesis presentation by an External Expert: 30 Marks